Algebra

Analyse

Bewijzen

De grafische rekenmachine

Discrete wiskunde

Fundamenten

Hulpmiddelen

Meetkunde

Oppervlakte en inhoud

Plaatjes en verhalen

Rekenen

Schoolwiskunde

Statistiek en kansrekenen

Telproblemen

Toegepaste wiskunde

Van alles en nog wat

Wiskundeleraar


\require{AMSmath}

3. Binomiale verdeling

In het geval van n waarnemingen, alle onafhankelijk, elk resulterend in succes of mislukking, en elk met eenzelfde kans p op succes, spreekt men van een binomiale kansverdeling.

De kans op een bepaalde gebeurtenis kan men berekenen met de volgende formule:

$\eqalign{P(X=k)={n\choose{k}}\cdot p^k\cdot(1-p)^{n-k}}$

De verwachting en de standaarddeviatie kan men berekenen met:

$\mu=n\cdot{p}$ en $\sigma=\sqrt{n\cdot{p}\cdot(1-p)}$

Voorbeeld

We gooien met 10 dobbelstenen. Wat is de kans op precies 3 keer een zes?
Invullen levert:

$
\eqalign{P(X = 3) = \left( {\begin{array}{*{20}c}
{10}\\
3\\
\end{array}} \right) \cdot \left( {\frac{1}{6}} \right)^3\cdot\left({\frac{5}{6}} \right)^7 \approx 0,155}
$

Voorbeeld 2

Uit een vaas met 4 rode en 6 witte knikkers worden, aselect en met teruglegging, drie knikkers getrokken. De stochast X is het aantal rode knikkers.

$\eqalign{P(X=0)={3\choose0}\cdot0,4^0\cdot0,6^3=0,216}$
$\eqalign{P(X=1)={3\choose1}\cdot0,4^1\cdot0,6^2=0,432}$
$\eqalign{P(X=2)={3\choose2}\cdot0,4^2\cdot0,6^1=0,288}$
$\eqalign{P(X=3)={3\choose3}\cdot0,4^3\cdot0,6^0=0,064}$

q67img2.gif

$E(x)=n·p=3·0,4=1,2$

Wat is de kans dat het aantal getrokken rode knikkers hoger is dan de verwachtingswaarde?

$P(X>1,2)=P(X=2)+P(X=3)=0,352$

F.A.Q.



©2004-2023 WisFaq