De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}


Ontbinden in factoren

Ik kwam 'ergens' een hele verzameling opgaven tegen over ontbinden in factoren. Op deze pagina zal ik die 's bespreken.

q69758img1.gif

Bij $(a+1)^2+(a+1)$ kun je de gemeenschappelijk factor (a+1) buiten haakjes halen. Je moet dan goed kijken wat er tussen de haakjes komt te staan:

  • $(a+1)^2+(a+1)=$
    $(a+1)((a+1)+1)=$
    $(a+1)(a+2)$

Idem voor $2(a+3)^2+4(a+3)$:

  • $2(a+3)^2+4(a+3)=$
    $2(a+3)((a+3)+2)=$
    $2(a+3)(a+5)$

Nog maar een voorbeeld: $(a+3)^2·(b+1)-2(a+3)(b+1)$. Je kunt hier de gemeenschappelijke factor $(a+3)(b+1)$ buiten haakjes halen.

  • $(a+3)^2·(b+1)-2(a+3)(b+1)=$
    $(a+3)(b+1)((a+3)-2)=$
    $(a+1)(a+3)(b+1)$

Kijken naar $(a+1)^2·(a+2)-(a-1)·(a+2)^2$. Je kunt alleen de factor $(a+2)$ buiten haakjes halen.

  • $(a+1)^2·(a+2)-(a-1)·(a+2)^2=$
    $(a+2)((a+1)2-(a-1)(a+2)=$
    $(a+2)(a^2+2a+1-(a^2+a-2))=$
    $(a+2)(a^2+2a+1-a^2-a+2)=$
    $(a+2)(a+3)$

Of zo:

  • $3·(a + 2)^2·(a - 2) + 9·(a + 2)·(a - 2)^2=$
    $3(a+2)(a-2)((a+2)+3(a-2))=$
    $3(a+2)(a-2)(a+2+3a-6)=$
    $3(a+2)(a-2)(4a-4)=$
    $12(a+2)(a-2)(a-1)$

En...

  • $-2(a+4)^3+8(a+4)^2(a+2)=$
    $2(a+4)^2(-(a+4)+4(a+2))=$
    $2(a+4)^2(-a-4+4a+8)=$
    $2(a+4)^2(3a+4)$

F.A.Q.


Extra


home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3