De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Vraagstuk mod-rekenen

Goeiedag, deze oefening stond in de cursus (valt onder modulurekenen)
Zoek een positief getal waarvoor de helft een kwadraat is, een derde is een derde macht en een vijfde is een vijfde macht. Bepaal tevens een algemeen gedaante voor alle getallen die aan deze eigenschap moeten voldoen.

Ik dacht er aan om een getal te schrijven in zijn priemfactorenontbinding, met als macht variabelen. Het probleem is dat ik niet goed weet hoe ik nu verder moet. Ik heb momenteel een getal=$2^\alpha$∑$3^\beta$∑$5^\theta$∑... enzoverder...

Weten jullie hoe ik nu verder moet?

Robin
Student universiteit BelgiŽ - maandag 10 juli 2017

Antwoord

Begin eens met
$$
n=2^\alpha\cdot3^\beta\cdot 5^\theta
$$
Omdat $n/2$ een kwadraat is volgt dat $\alpha-1$, $\beta$, en $\theta$ even zijn.
Omdat $n/3$ een derde macht is zijn $\alpha$, $\beta-1$ en $\theta$ drievouden.
En ten slotte zijn $\alpha$, $\beta$ en $\theta-1$ deelbaar door vijf.
Als je andere priemgetallen gebruikt moeten hun exponenten deelbaar zijn door $2$, $3$ en $5$, en dus door $30$.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 10 juli 2017
 Re: Vraagstuk mod-rekenen 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2017 WisFaq - versie IIb

eXTReMe Tracker