De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Integreren

Bereken de oppervlakte van het rozet

Beste, ik heb een vraag betreffende een oefening waar de oppervlakte berekend dient te worden van een rozet met de gegeven functie r = 3 sin2θ. In de oplossing staat dat de grafiek hier 4 bladen gaat hebben.

Dit is juist mijn vraag. Waarom heeft dit rozet juist 4 bladen? In de oefening ervoor r = 2 sin3θ heeft het rozet om de 60 graden een blad. Dus 3 bladen in totaal. Dit komt overeen met elke positieve 60 graden van de sinus. Delen we 180° door 3 bekomen we 60° en weten we de grootte van 1 blad en ook meteen hoeveel graden er tussen de bladen zit.

Als ik dit doe met de opgave r = 3 sin2θ. Dus 180°/2 bekom ik 90° als grootte van een blad. Wat wil zeggen dat er zich om de 90° een blad bevindt. In totaal zouden hier volgens mij dus 2 bladen moeten zijn, en geen 4. Wat de oplossing dus tegenspreekt.. Kan iemand mij hierbij helpen?

Bedankt!

Xavier
5-1-2020

Antwoord

Printen
Je moet de vergelijking letterlijk nemen: van $0$ tot $\frac\pi2$ krijg je één blad; van $\frac\pi2$ to $\pi$ is $r$ negatief en krijg je een tweede blad in het vierde kwadrant. Daarna, $\pi$ tot $\frac{3\pi}2$ is $r$ positief en krijg je een blad in het derde kwadrant. Het laatste interval, $\frac{3\pi}2$ tto $2\pi$ geeft een blad in het tweede kwadrant.
Bij je andere voorbeeld, $r=\sin3\theta$, heb je ook zes bladen maar de drie bladen die je ziet worden elk twee keer doorlopen.

kphart
5-1-2020


Integreren over twee dimensies

Gevraagd wordt om aan te tonen dat de integraal over een vierkant van 1x1 met als integrand: [1/(1-(xy)2)] gelijk is aan (3/4) * Riemann-zèta-functie (met s=2). De formule komt van: https://nl.wikipedia.org/wiki/Riemann-zèta-functie#Definitie.
Nu wordt als hint gegeven dat voor willekeurige I en J geldt: 0.5(I-J) + 0.5(I+J) = I. Bovendien is ook gegeven dat de integraal over hetzelfde vierkant maar dan met integrand [1/(1-xy)] - [1/(1+xy)] gelijk is aan 0.5*Riemann-zèta-functie (met s=2). Hoe zou ik hier gebruik kunnen maken van dit resultaat en de hint om de eerst genoemde integraal op te kunnen lossen? Ik dacht aan een substitutie met a = x2 en b = y2 maar het schiet niet op.

Melvin
12-1-2020

Antwoord

Printen
Je moet naar $\zeta(2)$ toewerken, kennelijk, en $\zeta(2)$ is gedefinieerd als een oneindige som: $\sum_{n=1}^\infty\frac1{n^2}$.
Ik zou om te beginnen eens kijken of je van $1/(1-(xy)^2)$ niet een som kun maken; via een meetkundige reeks bijvoorbeeld:
$$\frac1{1-(xy)^2} = \sum_{n=0}^\infty (xy)^{2n}
$$en $(xy)^{2n}$ kun je wel over dat vierkant integreren, toch?
Iets dergelijks kun je ook met $1/(1-xy)$ en $1/(1+xy)$ doen.

kphart
12-1-2020


Bepaalde integraal met andere afgeleide

Beste

Dit thema is nieuw voor mij en ik heb het dan ook nog niet helemaal onder de knie, vandaar deze vraag. Ik heb moeite met het oplossen van deze integraal en ook met de vraagstelling. Ik begrijp niet goed wat er juist gevraagd wordt.

Ten eerste : hoe kan je die integraal uitrekenen? Via substitutie lukt het mij niet want wat moet ik dan gelijk aan elkaar stellen? Ik zie ook niet direct hoe dit kan via carnot of partiële. Ten tweede snap ik de vraagstelling niet helemaal. Als je die integraal bent uitgekomen, wat moet je dan doen? Ik zie het verband niet tussen die primitieve en de afgeleide van de andere functie met de wortel van pi over 2.



Welke stelling moet je daarvoor ook gebruiken?
Alvast bedankt!! Dit zou mij heel veel vooruit helpen.
Met vriendelijke groeten

Elena
13-1-2020

Antwoord

Printen
Deze som hoort vast bij lessen over De Hoofdstelling van de Integraalrekening (zie de link hieronder). Die zegt: als $g:[a,b]\to\mathbb{R}$ continu is dan bestaat voor elke $x\in[a,b]$ de integraal $\int_a^x g(t)\mathrm{d}t$ en de nieuwe functie $G:[a,b]\to\mathbb{R}$ die je zo definieert, $G(x)=\int_a^x g(t)\mathrm{d}t$, is een primitieve van $g$; er geldt dus $G'(x)=g(x)$.

In jouw voorbeeld hebben we in eerste instantie
$$G(x)=\int_0^x\frac{2t}{1+\sin^2t}\mathrm{d}t
$$Dus hier geldt $G'(x)=\frac{2x}{1+\sin^2x}$ (hiervoor hoeven we de integraal niet uit te rekenen).

In je opgave geldt $f(x)=G(x^2+3\pi)$, dus je kunt $f'(x)$ nu bepalen met behulp van de kettingregel, en dan $\sqrt{\pi/2}$ invullen.
Zie Wikipedia: Hoofdstelling van de Integraalrekening

kphart
13-1-2020


Re: Bepaalde integraal met andere afgeleide

Het laatste deel begrijp ik niet zoë goed. Hoe kan je dat via de ketting regel uitrekenen en waarin moet je dat invullen?

Elena
14-1-2020

Antwoord

Printen
De kettingregel geeft $f'(x)=G'(x^2+3\pi)\cdot(x^2+3\pi)'=\frac{2(x^2+3\pi)}{1+\sin^2(x^2+3\pi)}\cdot 2x$. Nu kun je $f'(\sqrt{\pi/2})$ toch wel uitrekenen?

kphart
14-1-2020


Oppervlakte tussen twee krommen

Het wil mij niet lukken om de snijpunten te vinden tussen de krommen y2=ax en 2x + 3y = 2a voor een zekere a $>$ 0. Dit doe ik omdat ik de oppervlakte wil berekenen die wordt ingesloten tussen deze twee krommen. Is er hier zo’n truuk voor die ik over het hoofd zie?

Arjan
18-1-2020

Antwoord

Printen
Vermenigvuldig de tweede vergelijking met a wat 2ax + 3ay = 2a2 geeft. Vermenigvuldig de eerste met 2 wat geeft 2y2 = 2ax. In beide vergelijkingen zit nu de term 2ax die door een aftrekking of optelling gaat verdwijnen.

Je vindt 2y2 + 3ay -2a2 = 0 ofwel
(2y - a)((y + 2a) = 0 waaruit volgt y = 1/2a of y = -2a
Substitutie in een van de twee gegeven vergelijkingen levert de bijpassende x-waarde.

Drie opmerkingen:
1) De vermenigvuldiging met a is ‘veilig’ want a $>$ 0
2) De laatste ontbinding kan vermeden worden door op de tweedegraads vergelijking de abc-formule toe te passen.
3) Uiteraard kan het volledig anders. Uit de eerste vergelijking is de variabele x direct vrij te maken waarna je in de tweede vergelijking de x hierdoor kunt vervangen. Het geeft nauwelijks meer werk dan de nu gevolgde route.

MBL
18-1-2020


Dubbele afgeleide vinden met gegeven integralen

Hallo

Op welke manier kan je de dubbele afgeleide vinden en wat betekent die index 6? Hoe kom je aan de uitkomst? Moet kleine fx niet gewoon een functie zijn zonder integraalteken?

Gegeven fx = bepaalde integraal met ondergrens 6 bovengrens x2 van ((√(1+t3))/t)dt
Ook Fx = bepaalde integraal met ondergrens 6 bovengrens x van (f(t)dt)

Bepaal F''index 6 (2) (dus de dubbele afgeleide)
Moet je ook een tekenonderzoek maken?

Elena
18-1-2020

Antwoord

Printen
Bedoel je dat het om de functies
$$f(x)=\int_6^{x^2}\frac{\sqrt{1+t^3}}{t}\,\mathrm{d}t
$$en
$$F(x)=\int_6^x f(t)\,\mathrm{d}t
$$gaat?
De index $6$ begrijp ik niet helemaal, staat er $F_6''(2)$? Of toch iets anders?

Hoe dan ook, dit gaat over de hoofdstelling van de integraalrekening: die stelling zegt, onder andere, dat $F'(x)=f(x)$ als $F$ en $f$ als hierboven gerelateerd zijn. Dat geldt in het algemeen, dus je kunt het ook op de eerste functie toepassen, maar omdat er $x^2$ in de bovengrens staat moet je de kettingregel gebruiken:
$$f'(x) = \frac{\sqrt{1+x^6}}{x^2}\cdot 2x
$$Als er niet omgevraagd wordt lijkt een tekenonderzoek niet nodig.

kphart
19-1-2020


Integreren met substitutie

Gegeven is een integrand die een breuk is met als teller: e^(y-2x) en als noemer 1-sqrt(y-2x). Gevraagd wordt om deze te integreren over het gebied dat beschreven wordt door 0$<$x$<$1 en 2x$<$y$<$1+x2. De substitutie die gebruikt moet worden is x=u en y=2u+v2 met v$\ge$0. Ik heb als jacobiaan 2v. De teller kon ik herschrijven naar e^v2 en de noemer naar 1-v. De grenzen zijn volgens mij: 0$<$u$<$1 en 0$<$v$<$ u-1 Maar dit lijkt mij nog steeds een onmogelijke opgave. Heeft er iemand tips/advies?

Richar
18-1-2020

Antwoord

Printen
Schrijf de integraal die je krijgt op:
$$\iint_E \frac{e^{v^2}}{1-v}\cdot 2v\,\mathrm{d}(u,v)
$$je moet overigens wel $0 < v <1-u$ hebben want $u-1$ is negatief als $0\le u\le 1$.
Maak er een herhaalde integraal van waarbij je eerst naar $u$ integreert; en pas hierbij op met de grenzen.

kphart
19-1-2020


Een tripel integraal over R³

Gevraagd wordt een trippel integraal over $\mathbf{R}$3 waarbinnen: cos2(θ) / er d(r,θ,φ), uit te rekenen. Nu ben ik een beetje in de war vanwege de gekozen variabelen want zitten we dan in bol coördinaten of moet dat nog gebeuren en dus nog een jacobiaan erbij doen?

Richar
19-1-2020

Antwoord

Printen
Zoals de vraag gesteld is
$$
\iiint_{\mathbb{R}^3}\cos^2\theta \,e^{-r}\,\mathrm{d}(r,\theta,\varphi)
$$is het antwoord $\infty$. De namen van de variabelen mogen er niet toe doen, er staat letterlijk hetzelfde als
$$
\iiint_{\mathbb{R}^3}\cos^2x \,e^{-y}\,\mathrm{d}(x,y,z)
$$en hier zou je dus alledrie, $r$, $\theta$, en $\varphi$ van $-\infty$ naar $\infty$ moeten laten lopen, en in dat geval komt er $\infty$ uit.

Vermoedelijk is echter eerder in het boek afgesproken dat zodra $r$, $\theta$, en $\varphi$ gebruikt worden je ze meteen als bolcoördinaten moet interpreteren (blader maar eens terug). In dat geval krijg je een product van drie losse integralen:
$$
\int_0^\infty e^{-r}\,\mathrm{d}r\times\int_0^{2\pi}\cos^2\theta\,\mathrm{d}\theta\times\int_0^\pi1\,\mathrm{d}\varphi
$$(misschien moet je de grenzen voor $\theta$ en $\varphi$ omwisselen, afhankelijk van de conventie van je boek).

kphart
19-1-2020


Re: Re: Wentelen om een algemene functie

Beste meneer kphart,

Mischien wat laat om te antwoorden, maar ik had een ander iedee bij het uitrollen. Hierbij is de functie s(x) niet relevant (is een elliptische integraal). Voor mijn uitrollen heb ik complexe getallen gebruikt en alle functies omgeschreven tot parametrische vereglijkingen. In het geval van y=x3 schrijf ik het als het stelsel x(t)=t en y(t)=t3.
Ik gebruik vervolgens het feit dat dit eigenlijk een plaatsvector is om dit in een complexe vorm om te schrijven.
In dit geval wordt het f(t)=t+i*t3 en als ik mijn functie terug wil roteren hoef ik alleen met exp(-H*i).En omdat ik er voor wil zorgen dat de waarde y(t) nul wordt (het imaginaire deel moet dus nul worden ). In dit geval wordt mijn hoek H=arctan(t2) (dit is simpel na te rekenen ). Daarna kan je kan je de functie y=x2 ook zo transformeren. Hierna kan je de snijpunten van de getransformeerde van y=x2 met de lijn y=0 uitreken (dit is de getransformeerde van y=x3). hieruit komen volgensmij de waarden t=0 en t=1. De inhoud van het omwentelingslichaam wordt dus π* integraal van t=0 tot t=1 {y2(t)x'(t)}dt. De y(t) en x(t) in de integraal zijn die vam y=x2 na de rotatie. Ik kom via deze methode uit op een numerieke waarde van V=0,038029... blijft de inhoud hetzelfde? En wat bedoelt u met het uitrollen?

M.v.g.
Antoni R.

Antoni
20-1-2020

Antwoord

Printen
Mijn uitrollen was (bijna) letterlijk dat: beschouw de grafiek van $y=x^3$ als een touwtje en leg dat recht op de $x$-as; daar wordt dus overal de lengte bewaard. Maar ik zag niet hoe deze transformatie ook naar de rest van het vlak kunt uitbreiden met behoud van volume van het wentellichaam.

Jouw methode is niet echt uitrollen, na transformatie is het touw gekrompen tot $\sqrt2$ en dat verstoort meteen de inhoud; en wat bedoel je met `ook zo transformeren' van $y=x^2$? Vermenigvuldigen met $\exp(-i\arctan t)$? Dat trekt de grafiek van $y=x^2$ krom ten opzichte van $y=x^3$ want $(t,t^2)$ gaat met een andere snelheid dan $(t,t^3)$. Ik zie niet hoe dit nog het volume kan bewaren.

kphart
20-1-2020


Integraal over een oppervlak

Gevraagd wordt om $$\int_S xy \text{d}S$$ over de paraboloide $z=x^2+y^2$ boven het vierkant $0 $<$x $<$ 1, 0 $<$ y $<$ 1$ te berekenen. Ik heb allereerst $\text{d}S$ uitgerekend, welke gelijk is aan $\sqrt{1 + 4x^2 + 4y^2}\text{d}x \text{d}y$. Toen resulteerde ik met deze integraal, $$\int_0^1 \int_0^1 xy \sqrt{1 + 4x^2 + 4y^2}\text{d}x \text{d}y.$$ Deze integraal is volgens mij nog steeds te lastig, kan iemand mij vertellen wat er precies fout gaat.

Marcos
22-1-2020

Antwoord

Printen
Dat valt best mee; als je bijvoorbeeld eerst met betrekking tot $y$ integreerd komt er
$$\int_0^1 y\sqrt{1+4x^2+4y^2}\,\mathrm{d}y
$$(de factor $x$ heb ik even buiten die integraal gehaald). Bedenk dat $1+4x^2$ hier een constante is en dat je een substitutie als $u=y^2$ (of zelfs $u=4y^2$) kunt toepassen; je krijgt dan met iets van de vorm $b\int\sqrt{a+u}\,\mathrm{d}u$ te maken. Daarna, bij het integreren naar $x$ kun je $v=x^2$ doen.

kphart
22-1-2020


Het integreren van somfuncties

In mijn Leerboek der Analyse staat het volgende vraagstuk.
Integreer van 0-pi somma van n=1 tot oneindig:
sin(nx)/n2 dx.

Oplossing volgens het boek:
somma n =1 tot n naar oneindig : 2 gedeeld door
( 2n - 1 ) tot de de derde. Volgens mij kan dit niet goed zijn. Ik krijg Somma n =1 tot n naar oneindig : 1-( -1 ) tot de n-de gedeeld door n tot de derde macht. Is dit juist ?

W.Vene
25-1-2020

Antwoord

Printen
Beide zijn goed, voor alle duidelijkheid schrijf in de integraal van een term nog even op:
$$\int_0^\pi\frac{\sin nx}{n^2}\,\mathrm{d}x=\left[-\frac{\cos nx}{n^3}\right]_0^\pi=-\frac{(-1)^n}{n^3}+\frac1{n^3}
$$Welnu, daar staat $0$ als $n$ even is, en $\frac2{n^3}$ als $n$ oneven is. De oplossing in het boek
$$\sum_{n=1}^\infty\frac{2}{(2n-1)^3}
$$slaat gewoon de even termen (de nullen dus) gewoon over.

kphart
25-1-2020



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb