De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Goniometrie

oefening som en verschilformules

Hallo,
ik kreeg volgende vergelijking:
4(cos6x-sin6x)=cos2x(4-sin22x)
Ik ben als volgt begonnen, maar kom niet tot de uitkomst;

4(cos6x-sin6x= 4((cos2x)3-(sin2x)3
=4((cos2x-sin2x)(cos4x-2cos2xsin2x+sin4x)

Kunnen jullie mij verder helpen?

Alvst bedankt!

Cakes
2-1-2021

Antwoord

Printen
Gebruik de dubbelehoekidentiteit voor de cosinus en ontbindt de tweede factor met de identiteit voor $A^2\mathbf{+}2AB+B^2$ (en kijk nog eens goed naar de formule voor het ontbinden van een tweeterm van de derde graad).

js2
2-1-2021


Vergelijking sinus

Hoe los je deze vergelijking op?
2 sin⁡(1/2x)=1 op [0, 6pi]

Hans B
12-1-2021

Antwoord

Printen
Ik heb daar op 7. Het oplossen van goniometrische vergelijkingen nog 's iets over geschreven. Dat is mogelijk het bestuderen waard...

In dit geval ziet een oplossing er zo uit:

$
\eqalign{
& 2\sin \left( {{1 \over 2}x} \right) = 1 \cr
& \sin \left( {{1 \over 2}x} \right) = {1 \over 2} \cr
& {1 \over 2}x = {1 \over 6}\pi + k \cdot 2\pi \vee {1 \over 2}x = {5 \over 6}\pi + k \cdot 2\pi \cr
& x = {1 \over 3}\pi + k \cdot 4\pi \vee x = {5 \over {12}}\pi + k \cdot 4\pi \cr
& {\rm{Voor}}\,\,\,x \in \left[ {0,6\pi } \right] \cr
& x = {1 \over 3}\pi \vee x = 4{1 \over 3}\pi \vee x = {5 \over {12}}\pi \vee x = 4{5 \over {12}}\pi \cr}
$

Helpt dat?

WvR
12-1-2021


Goniometrische basisvergelijkingen

Ik was een week afwezig, zat in quarantaine:/, en zit compleet vast bij de volgende vergelijking: sin(x)-√3.cos(x)=0

Mijn leerkracht is niet te bereiken en ik heb morgen een grote toets, dus zou het fijn zijn als iemand me op weg zou kunnen helpen, Alvast bedankt!

Allici
21-1-2021

Antwoord

Printen
Hallo,

Deel de vergelijking door cos(x) en je bekomt :

tan(x) - √3 = 0
of tan(x) = √3

en dit is een eenvoudige basisvergelijking.

Ok?

LL
21-1-2021


Puntmuts in vorm van kegelmantel

Ik worstel met de volgende opgave:

Een puntmuts heeft de vorm van een kegelmantel en in de uitslag van deze kegelmantel is hoek ATA 90 graden. Verder geldt dat TA = 39 cm en dat AB = BC = CT. De puntmuts wordt versierd met 3 rode linten. Die linten worden gespannen om de mantel van A naar A, van B naar B en van C naar C.

Gevraagd: bereken de totale lengte van de de drie linten in cm nauwkeurig.

Ik heb dat als volgt gedaan: de omtrek van de cirkel is: 2 * * 39 cm = 245,044227. 1/4 * 245,044727 = 61,26105675. Voor lint B geldt dan: 2/3 * 61,26105675 = 40,8407045 en voor lint C is dit: 1/3 * 61,26105675 = 20,42035225. Totale lengte is dan: 122,52 cm. Afgerond 123 cm. Het antwoorden boekje geeft echter aan 110 cm. Ik vraag me af wat ik hier niet goed doe. Als ik uitga van TA = 35 cm dan kom ik wel uit op 110 cm.

Joost
23-1-2021

Antwoord

Printen
Hallo Joost,

Wanneer je een lint spant van A naar A', dan is de kortste afstand volgens een rechte lijn op de uitslag van de kegelsnede, zie onderstaande figuur.

q91428img1.gif

Op de puntmuts vormen de linten geen cirkels in het horizontale vlak. Tegenover de punten A, B en C kruipen de linten wat omhoog.

De totale lengte van de drie rode lijnen is afgerond 110 cm.

GHvD
23-1-2021


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie IIb