De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Getaltheorie delers van een geometrische functie met gehele getallen

STELLING

n Is een natuurlijk getal.
p Is een priemgetal.

f(n,p) = 1 + n + n2 + …. + n^(p-1)

Als n = 1 mod p dan is p een deler van f(n,p)

Als d een deler is van f(n,p) čn d ≠ p dan is d = 1 mod p

Is hier een bewijs voor?
Zo niet: Hoe bewijs je dit?

Chris Mank
Iets anders - dinsdag 22 februari 2022

Antwoord

De eerste bewering klopt: omdat $n\equiv1\bmod p$ geldt $n^i\equiv 1\bmod p$ en dan geldt dus $f(n,p)\equiv p\cdot 1\equiv0\bmod p$.

De tweede klopt niet: neem $p=2$ en $n=7$, dan $f(7,2)=8$ en $4$ is een deler van $8$, maar $4\equiv0\bmod 2$.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 22 februari 2022



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2022 WisFaq - versie 3