De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Raakpunt

Gegeven: Parabool $\leftrightarrow$ y = 4.x
Gevraagd: Bepaal een vergelijking van de raaklijn evenwijdig met l$\leftrightarrow$ 2x -y + 3=0. Bepaal ook het raakpunt.
Kunt u aub mij helpen met deze vraag?

Riffat
3de graad ASO - donderdag 4 februari 2021

Antwoord

y2=4x $\Leftrightarrow$ x=1/4y2. Dat is een liggende parabool. Gezocht raaklijn aan deze parabool evenwijdig aan de lijn l: y=2x+3 , dus met richtingscoefficient 2

Die liggende parabool is geen functie en dat maakt het wat lastig. Om met de afgeleide te kunnen werken zijn er twee mogelijkheden:

Ofwel je schrijft de parabool om naar twee wortelfuncties dus y=2√x en dan los je op wanneer de afgeleide 2 wordt.

De andere mogelijkheid is de situatie spiegelen in y=x, dus x en y verwisselen. Dan kijk je naar de parabool y=1/4x2 en dan zoek je het punt op waar de afgeleide 1/2 wordt (dat is ook gespiegeld). Dus x=1 en punt (1,1/4). Daarna weer x en y verwisselen.

Levert op beide manieren punt (1/4,1) van de oorspronkelijke parabool als raakpunt op. Dit tot slot invullen in de raaklijn van de vorm y=2x+b

Met vriendelijke groet
JaDeX

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 4 februari 2021



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3