De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Goniometrische oefening complexe getallen

Hallo,



Ik begrijp niet zo goed waarom die breuk 1 op vierkantswortel twee ineens pi op vier wordt. Dit staat niet in de tabel, dus hoe zie je dat? En als je zo twee verschillende getallen hebt (in dit geval pi op vier en min vier op pi), hoe weet je welke je moet kiezen? Ik bedoel dus het getal bij theta na de accolade.

Alvast bedankt.

Sarah
3de graad ASO - woensdag 3 februari 2021

Antwoord

Het verhaal is onvolledig en niet netjes.
Ik zou in het plaatje de plaatsvector van $1-i$ getekend hebben, met $r$ (de lengte) en $\theta$ (hoek met reŽle as) erbij geschreven.
q91476img1.gif
Wat niet zo netjes is dat bij een cosinus van $\frac1{\sqrt2}$ alleen de hoek $\frac\pi4$ genoemd wordt, $-\frac\pi4$ heeft ook die cosinus. En bij de sinus zou ook $-\frac{3\pi}4$ genoemd moeten worden.
In het plaatje is te zien dat we in het vierde kwadrant zitten, daarom blijft $-\frac\pi4$ over.
En verder zou ik die $\Rightarrow$ vervangen door "en dus is $1-i$ gelijk aan"

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 3 februari 2021
 Re: Goniometrische oefening complexe getallen 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie IIb