De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Dv oplossen

Bepaal de algemene oplossing van de differentiaalvergelijking: xy2y'=(1/3√ln(3x)) met x$>$0.

ik weet echt niet hoe ik dit kan oplossen. kan iemand mij aub verder helpen? :)

elke
3de graad ASO - dinsdag 19 januari 2021

Antwoord

Beste Elke,

De differentiaalvergelijking is scheidbaar, met $x$>$0$:
$$xy^2y'=\frac{1}{\sqrt[3]{\ln(3x)}} \iff y^2 y'=\frac{1}{x\sqrt[3]{\ln(3x)}}$$en dus:
$$\int y^2\,\mbox{d}y=\int\frac{1}{x\sqrt[3]{\ln(3x)}}\,\mbox{d}x$$Voor de integraal rechts kan je de substitutie $u=\ln(3x)$ gebruiken.

Kan je zo verder?

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 19 januari 2021
 Re: Dv oplossen 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3