De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

De maximale inhoud van een balk

Een doos heeft een vorm van een balk. Ze heeft een vierkant grondvlak, is vooraan open en heeft een oppervlakte van 3 dm2.
  • Bepaal de afmetingen van de doos als de inhoud maximaal is.
Ik begon met eerst de vierkantszijde te benoemen als x en de hoogte als x+y.

De oppervlakte zou dan berekend kunnen worden als 3x(x+y) +2x2 = 3 (aangezien de doos vooraan open is en dus een zijde mist)

...of 5x2 + 3xy = 3.

Hiermee kan ik dan x gelijk stellen als y en binnen de afgeleide van de inhoudsfunctie y vervangen om x te bekomen.

Dit komt echter niet uit. De antwoorden zouden voor x = 1/√2 en y = 4/(3√2) moeten geven. Maar deze resulteren ook niet tot 3 in mijn oppervlakte functie.

Ik zou graag willen weten waar ik de mist in ga en hoe je deze vraag best oplost.

Victor
3de graad ASO - zondag 5 juli 2020

Antwoord

Ik zie niet in waarom je voor de hoogte $x+y$ zou nemen. Neem voor de hoogte $y$. Je krijgt dan:

$2x^2+3xy=3$ en $I=x^2y$

Uiteindelijk volgt dan het gegeven antwoord.

Aanvulling

$
\eqalign{
& x = {1 \over {\sqrt 2 }} = {1 \over 2}\sqrt 2 \cr
& y = {4 \over {3\sqrt 2 }} = {2 \over 3}\sqrt 2 \cr}
$

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 5 juli 2020



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb