De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Re: Re: Examenopgave mbo 82-83

 Dit is een reactie op vraag 89648 
Dat heb ik verkeerd overgenomen. Ik geloof het wel. Ik ga de opgave niet helemaal opnieuw maken.

mboudd
Leerling mbo - zaterdag 18 april 2020

Antwoord

Heel verstandig...

De rest was prima. Je krijgt de uitwerking van mij:

$
\eqalign{
& V = \left( {\matrix{
3 \cr
3 \cr
0 \cr

} } \right) + \lambda \left( {\matrix{
1 \cr
0 \cr
0 \cr

} } \right) + \mu \left( {\matrix{
1 \cr
1 \cr
{ - 1} \cr

} } \right) \to y + z = 3 \cr
& BCT = \left( {\matrix{
{ - 3} \cr
3 \cr
0 \cr

} } \right) + \rho \left( {\matrix{
0 \cr
1 \cr
0 \cr

} } \right) + \tau \left( {\matrix{
1 \cr
1 \cr
3 \cr

} } \right) \to 3x - z = - 9 \cr
& \left\{ \matrix{
y + z = 3 \cr
3x - z = - 9 \cr} \right. \cr
& x = \lambda \cr
& \left\{ \matrix{
y + z = 3 \cr
3\lambda - z = - 9 \cr} \right. \cr
& \left\{ \matrix{
y + z = 3 \cr
z = 3\lambda + 9 \cr} \right. \cr
& \left\{ \matrix{
y + 3\lambda + 9 = 3 \cr
z = 3\lambda + 9 \cr} \right. \cr
& \left\{ \matrix{
y = - 3\lambda - 6 \cr
z = 3\lambda + 9 \cr} \right. \cr
& s = \left( {\matrix{
0 \cr
{ - 6} \cr
9 \cr

} } \right) + \lambda \left( {\matrix{
1 \cr
{ - 3} \cr
3 \cr

} } \right) \cr
& l = \left( {\matrix{
3 \cr
{ - 3} \cr
0 \cr

} } \right) + \lambda \left( {\matrix{
1 \cr
{ - 3} \cr
3 \cr

} } \right) \cr}
$

Goed gedaan...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 18 april 2020



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb