De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Limiet van een quotiŽnt van polynomen

Gevraagd wordt om een epsilon delta bewijs te geven van de volgende limiet met een zo groot mogelijk domein waarop de functie gedefinieerd is.
$$\lim_{x \rightarrow 1} \frac{1-x}{1-x} = 1.$$Mijn bewijs volgt hieronder. Ik heb het gevoel dat dat net iets te triviaal is omdat ik niet gebruik maak van de aanname dat de afstand van $x$ tot 1 kleiner is dan $\delta$. Weet iemand of je dat gegeven per se moet gebruiken in een bewijs?

$\textit{Bewijs}$. Zij $\epsilon $>$ 0$. Kies $\delta $>$ 0$ zo dat $\delta $<$ \epsilon$. Laat $x \in R \backslash \{1\}$ met $|x - 1| $<$ \delta$. Er volgt dat $\eqalign{\left| \frac{1-x}{1-x} - 1\right| = |1 - 1| = |0| = 0 }$<$ \delta $<$ \epsilon.$ (immers $x \neq 1$).

Mark
Student universiteit - vrijdag 31 januari 2020

Antwoord

Je bewijs is correct; de functie waar het om gaat is constant, met waarde $1$ en dan doet $\delta$ er niet toe als hij maar positief is. Je kunt zelfs $\delta=1$ nemen, ongeacht $\varepsilon$.
Dit soort uitzonderlijke gevallen is wel leerzaam want je kunt je hier op de juiste vorm van de redenering concentreren.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 31 januari 2020



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb