De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Dubbele afgeleide vinden met gegeven integralen

Hallo

Op welke manier kan je de dubbele afgeleide vinden en wat betekent die index 6? Hoe kom je aan de uitkomst? Moet kleine fx niet gewoon een functie zijn zonder integraalteken?

Gegeven fx = bepaalde integraal met ondergrens 6 bovengrens x2 van ((√(1+t3))/t)dt
Ook Fx = bepaalde integraal met ondergrens 6 bovengrens x van (f(t)dt)

Bepaal F''index 6 (2) (dus de dubbele afgeleide)
Moet je ook een tekenonderzoek maken?

Elena
3de graad ASO - zaterdag 18 januari 2020

Antwoord

Bedoel je dat het om de functies
$$f(x)=\int_6^{x^2}\frac{\sqrt{1+t^3}}{t}\,\mathrm{d}t
$$en
$$F(x)=\int_6^x f(t)\,\mathrm{d}t
$$gaat?
De index $6$ begrijp ik niet helemaal, staat er $F_6''(2)$? Of toch iets anders?

Hoe dan ook, dit gaat over de hoofdstelling van de integraalrekening: die stelling zegt, onder andere, dat $F'(x)=f(x)$ als $F$ en $f$ als hierboven gerelateerd zijn. Dat geldt in het algemeen, dus je kunt het ook op de eerste functie toepassen, maar omdat er $x^2$ in de bovengrens staat moet je de kettingregel gebruiken:
$$f'(x) = \frac{\sqrt{1+x^6}}{x^2}\cdot 2x
$$Als er niet omgevraagd wordt lijkt een tekenonderzoek niet nodig.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 19 januari 2020



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb