De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Partiele Afgeleiden in neuraal netwerk

Op Machine Learning for Beginners: An Introduction to Neural Networks gebeurt er in 4. Training a Neural Network, Part 2 een stap die ik niet begrijp.

Het gaat over het volgende :
Gegeven : ypred​=o1​=f(w5​h1​+w6​h2​+b3​) wordt het volgende gezegd :
@Ypred/@h1 = w5 * fī(w5​h1​+w6​h2​+b3​)

In de tekst wordt gezegd dat de kettingregel toegepast wordt om deze stap te maken. Toch begrijp ik niet op welke manier dan wel.

Graag een woordje uitleg.

Dank bij voorbaat

peter
Iets anders - donderdag 21 maart 2019

Antwoord

Als je partieel differentieert naar $h_1$ dan doe je of de rest van de variabelen constant is. Er staat dus eigenlijk
$$
y_{pred} = f(w_1h_1+c)
$$waarbij $w_6h_2+b_3$ tot een constante $c$ is samengevoegd.
Differentieer nu de rechterkant naar $h_1$:
$$
f'(w_1h_1+c)\cdot (w_1h_1+c)'
$$die laatste afgeleide is gewoon $w_1$.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 21 maart 2019
 Re: Partiele Afgeleiden in neuraal netwerk 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb