De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Re: Een massa aan een veer

 Dit is een reactie op vraag 87733 
Dag JS,
Ik redeneerde als volgt=
a=d2x(t)/dt2=-kx(t) met a is de versnelling(2 de afgeleide )komt voort van F=ma(2de wet Newton)
Nu is de snelheid v gelijk aan:
v=dx/dt--5/100INT(x(t)(k=5 en m=100 )
dx=-1/20INT x(t)dt
dx= -1/40x2(t)+C(1)
x(t)=(-1/40)x^3/3+C()x+C(2)
x(t)=-(1/120)x^3+C(1)x+C(2)
Maar is dit wel juist??
Anderzijds begrijp ik ook een voorstelling van:
x(t) =asin(wt)
dx/dt)=Awcos(wt)
=d2x(t)/dt2=a= -Aw2sin(wt)
OP een teken na is dit dezelfde functie als in x(t). Dus , de tweede afgeleide is ,op een minteken na, gelijk aan(x(t)
Maar voor de verdere afwerking heb ik nog wel je hulp nodig, als dat mogelijk is. Ik heb het gevoel maar wat rond te dobberen en zou toch met "mijn bootje" weer aan wal willen gaan.
Groetjes
Rik

Rik Le
Iets anders - maandag 18 maart 2019

Antwoord

Die derdegraadsfunctie is alleszins verkeerd. Vul maar eens in de DV in, dan zie je meteen dat dat niet klopt.

De situatie met sinus is wel juist. Als je deze x(t) in de DV invult zie je dat $\omega^2=\frac{k}{m}$. Bepaal nu $k$, $m$ is al gegeven, dus $\omega$ valt snel te bepalen. Je kunt hier de periode en frequentie mee bepalen, en dus snel een antwoord op b) vinden.
Om a) op te lossen moet je eerst een vergelijking voor de snelheid afleiden $\dfrac{dx}{dt}=v_x(t)=A\omega\cos \omega t $. Aangezien de snelheid in het evenwichtspunt een maximum (of minimum) bereikt, vind je $v_{\rm max}=A\omega$. Nu kun je dus $A$ bepalen en heb je de gezochte bewegingsvergelijking.

js2
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 19 maart 2019



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb