De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath}

Othogonaliteit als onderdeel in een meetkundige bewijsvoering

Vooraf formuleer ik even de opgave: 'Teken op de zijden AB en AC van driehoek ABC, buiten die driehoek, de vierkanten ABMN ACPQ. Bewijs dan NQ gelijk is aan het dubbele van de zwaartelijn za uit A van driehoek ABC.'

Mijn aanpak van het probleem: Teken door A een evenwijdige p met NQ en pas op p de lijnstukken AE = AF = za af.


Verbind dan E met N en F met Q. Het is dan de bedoeling aan te tonen dat de vierhoek EFQN een parallellogram is.
Uit de figuur volgt dat driehoek AEN congruent is met driehoek ABD (AN=AB=c, AE=AD=za en gelijke ingesloten hoek gamma); analoog is driehoek AFQ congruent met driehoek ACD (AQ=AC=b, AF=AD=za en gelijke ingesloten hoek delta). (^)

Uit die congruentie volgt dat hoek(AEN) = D1 = alpha resp. hoek(AFQ) = D2 = bÍta

Nu zijn D1 en D2 supplementaire hoeken, dus ook alpha en bÍta, m.a.w. alpha + bÍta = 180į (1). Nu worden de rechten EN en FQ gesneden worden door de rechte p, waarbij supplementaire binnenhoeken alpha en bÍta worden vast gesteld. Hieruit volgt dat EN // FQ (2).

Anderzijds is bij constructie EF // NQ (3). Uit (2) en (3) volgt dat de vierhoek EFQN een parallellogram is
=$\Rightarrow$ NQ = EF = 2.za (bij constructie).

Bemerking: Er zit een zwak punt in de redenering en dit heeft te maken met die 'ingesloten hoeken' (^). De hoeken gammaa zijn gelijk omdat de benen van die hoeken orthogonaal zijn. Analoog voor de hoeken delta. Bij constructie is AN orthogonaal met AB (vierkant), maar aantonen dat AE orthogonaal met AD=za is een ander verhaal. Het komt er dus op neer dat nog moet worden aangetoond dat AD = za orthogonaal is met p = EAF.

VRAAG: Hoe slaag ik er in, om aan te tonen dat p orthogonaal is met AD = za? Graag een tip om dit aan te pakken binnen het kader van de vlakke meetkunde (analytisch kan ik die orthogonaliteit wel aantonen). Hartelijk dank voor uw tussenkomst!

Yves D
Iets anders - dinsdag 5 maart 2019

Antwoord

Ik zou aantonen dat $NQ$ loodrecht staat op $z_a$.

Leg een kopie van $ABC$ langs de zijde $AQ$ van het rechtervierkant en wel zo dat $A$ naar $Q$ gaat en $C$ naar $A$ (draai de driehoek $90^\circ$ met de klok mee om het midden van het vierkant).

Idem langs de zijde $AM$ van het linkervierkant: $A$ naar $M$ en $B$ naar $A$ ($90^\circ$ tegen de klok in om het middelpunt van het vierkant).

De bovenste hoek bij $A$ is gelijk aan $\beta+\gamma$ dus de twee kopieŽn van de zijde $BC$ vallen precies op elkaar.

De lijn $NQ$ is een diagonaal van het parallellogram dat uit de twee driehoeken bestaat en bestaat dus uit twee stukken die elk even lang zijn als $z_a$, en daar door de draaiingen loodrecht op staan.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 5 maart 2019



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb