De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oppervlakte regelmatige n-hoek

Ik ben hopeloos aan het zoeken naar een formule om de oppervlakte van een gelijkzijdige zeshoek, achthoek, twaalfhoek en zestienhoek te berekenen. Jammer genoeg vind ik hier heel weinig over.

Saskia
Iets anders - zondag 3 februari 2002

Antwoord

Het is mogelijk voor een regelmatige n-hoek een formule voor de oppervlakte af te leiden.

q1362img1.gif

De hoekpunten van zo'n $n$-hoek liggen op een cirkel met straal $r$. Deze $n$-hoek bestaat uit $n$ gelijkbenige driehoeken met basis $k$, hoogte $h$ en tophoek $\beta$. De oppervlakte van één zo'n driehoek is $\eqalign{
O_{driehoek} = \frac{1}
{2} \cdot k \cdot h}
$

Je krijgt dan:

$
\eqalign{
& h = r \cdot \cos \left( {\frac{\beta }
{2}} \right) \cr
& k = 2 \cdot r \cdot \sin \left( {\frac{\beta }
{2}} \right) \cr}
$

Invullen geeft:

$
\eqalign{
& O_{driehoek} = \frac{1}
{2} \cdot k \cdot h \cr
& O_{driehoek} = \frac{1}
{2} \cdot 2 \cdot r \cdot \sin \left( {\frac{\beta }
{2}} \right) \cdot r \cdot \cos \left( {\frac{\beta }
{2}} \right) \cr
& O_{driehoek} = r^2 \cdot \sin \left( {\frac{\beta }
{2}} \right) \cdot \cos \left( {\frac{\beta }
{2}} \right) \cr
& O_{driehoek} = \frac{1}
{2} \cdot r^2 \cdot \sin \left( \beta \right) \cr}
$

Voor de oppervlakte van de regelmatige n-hoek kan je op dezelfde manier de formule voor een willekeurige waarde van $n$ afleiden:

$
\eqalign{
& O_{n - hoek} = \frac{1}
{2} \cdot n \cdot r^2 \cdot \sin \left( \beta \right) \cr
& \beta = \frac{{360^\circ }}
{n} \cr}
$

Oftewel:
$
\eqalign{O_{n - hoek} = \frac{1}
{2} \cdot n \cdot r^2 \cdot \sin \left( {\frac{{360^\circ }}
{n}} \right)}
$

Daarmee kan je voor een regelmatige n-hoek de oppervlakte uitrekenen.

Als je de hoeken liever in radialen wilt uitdrukken dan krijg je:

$
\eqalign{O_{n - hoek} = \frac{1}
{2} \cdot n \cdot r^2 \cdot \sin \left( {\frac{{2\pi }}
{n}} \right)}
$

Voor $r=1$ en $n\to\infty$ zou hier dan $\pi$ uit moeten komen...

Naschrift
Dit kan ook:

$
\eqalign{O_{n - hoek} = n \cdot r^2 \cdot \sin \left( {\frac{\pi }
{n}} \right)\cos \left( {\frac{\pi }
{n}} \right)}
$

Dat is ook leuk...

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 3 februari 2002



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3