\require{AMSmath}
WisFaq - de digitale vraagbaak voor wiskunde en wiskunde onderwijs


Printen

Hoek en afstand van vlak en lijn

Hallo, ik ben bezig met het leren van de hoofdstuk over meetkunde. Het gaat over afstanden en hoeken, ik begrijp de stof wel, maar ik kan een paar vragen niet oplossen, kan iemand me hiermee aub helpen? Ik heb alle zoekopties gebruikt, heb een paar gevonden, maar deze vragen zijn niet hetzelfde.

-Bij vraag 27c, heb ik van M een lijn (naar beneden toe) evenwijdig aan de loodlijn TS getekent, de snijpunt met AD is M'. M'heb ik verbonden met B. De hoek die je moet berekenen, is de hoek tussen BM'en BM, is dit goed? Je ziet dat M'D=1.5 omdat M'D is 1/4 van AD. Je ziet dat M'M is 4 omdat M in het midden van TS staat. Nu is het probleem, dat het antwoordenboek voor MB een ander waarde geeft, dus neem ik een andere tan-1 waarde, wat doe ik fout?

-vraag 27 e kan ik niet maken, omdat ik c al niet begreep.

vraag27= http://www.photo-host.org/v/sports/507444naamloos.jpg
antwoord vraag 27= http://www.hhofstede.nl/nelly/uitwerkingen...en%20hoeken.doc


-Bij vraag 12b, heb je te maken met een afstand van een punt tot een vlak. Dus moet je een vlak vinden waarin punt B in zit, en een lijn van vlak ADE. Je kan hulpvlak AEFB of ABCD. Omdat bij vlak ABCD afstand is 12, is dit niet de kleinste getal,n AEFB heb je een kleiner afstand. Als ik in AEFB de afstand bereken m.b.v. zijde*hoogte methode krijg ik 11,07. Maar juiste antwoor is 10,73, wat heb ik fout gedaan?

-en 12 c begrijp ik hierdoor ook niet

vraag 12= http://www.Photo-Host.org/view/945253naamloos2.jpg

Kucuko
Leerling bovenbouw havo-vwo - vrijdag 23 maart 2007

Antwoord

Komt goed. Maar het moet iets anders. Als je van M loodrecht naar beneden gaat kom je op AS. Daar ligt dus ook M'. Je hebt wel gelijk dat je vervolgens de MBM' moet berekenen.

Jouw aanpak van vraag 12 is mij niet helemaal helderh. Het is niet voldoende om de afstand van B tot een lijn van ADE te berekenen. Als het hulpvlak niet loodrecht op ADE staat krijg je een te grote afstand dat blijkt. Het juiste antwoord is inderdaad 10,73. Maar aangezien ik niet weet wat jij voor methodes gebruikt kan ik niet zeggen hoe je dit moet aanpakken. Vertel me hier eens wat meer over...

os
vrijdag 23 maart 2007

 Re: Hoek en afstand van vlak en lijn 

©2004-2020 WisFaq