De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

ExponentiŽle functies

Beste

Hoe bewijs je het volgende?

Toon aan dat een horizontale verschuiving van de grafiek van de functie met voorschrift f(x) = ax over een afstand d (naar rechts indien d$>$0 en naar links indien d$<$0) geÔnterpreteerd kan worden als een verticale uitrekking en geef de factor van die uitrekking.

Ik weet wel dat dit een exponentiele functie is en dat als het een horizontale verschuiving naar rechts - is, en naar links + maar hoe ik dit moet bewijzen als een verticale uitrekking snap ik volledig niet.

Bedankt alvast!

Met vriendelijke groeten

Nisa H
3de graad ASO - zondag 6 december 2020

Antwoord

Hallo Nisa,

We gaan uit van de functie f(x)=ax. Wanneer we de grafiek horizontaal over een afstand d verschuiven, dan wordt het nieuwe functievoorschrift:

g(x)=a(x-d)

Dit kunnen we schrijven als:

g(x)=ax∑a-d

Dit is de oorspronkelijke functie, vermenigvuldigd met a-d. Dit komt overeen met een verticale uitrekking met deze factor.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 6 december 2020



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie 3