De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Dubbele sommatieteken

Beste

Deze vereenvoudiging van een dubbele som gaat mijn petje te boven. Hoe kan som (van x=1 tot n) som (van y = 1 tot x) van a/(n(n+1)) nou gelijk zijn aan a/(n(n+1)) som (van x = 1 tot n) van x? Er is gegeven dat 1 $\le$ y $\le$ x $\le$ n, dus het samenvoegen van de sommaties is voor de hand liggend. Alleen begrijp ik niet goed waarvan de x komt.
Zou u mij kunnen helpen?

Alvast bedankt!

Stepha
Student universiteit BelgiŽ - zaterdag 28 december 2019

Antwoord

Merk op dat a/(n(n+1)) niet van x noch van y afhangt.
Dus je kunt a/(n(n+1)) gewoon buiten de sommaties halen en je houdt over
$$\displaystyle{\frac{a}{n(n+1)}\displaystyle\Sigma_{x=1}^n\Sigma_{y=1}^x 1}$$En $\Sigma_{y=1}^x 1=x$

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 28 december 2019



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb