De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Cilindervormige vlaggenmast met een diameter van 9 cm

Een cilindervormige vlaggenmast heeft een diameter van 9 cm ( dus een straal van 4,5 cm ) en is 6 meter lang. Van de top T tot punt A, n meter boven de grond, is het vlaggentouw precies 4 keer om de mast gewonden. Punt A ligt recht onder punt T. De vraag is hoeveel cm is de lengte van het vlaggentouw tussen T en A. het antwoordenboekje geeft aan ongeveer 513 cm. Ik kwam daar ook met de hieronder genoemde berekening, maar toch vind ik dit niet logisch

De straal is dan 4,5 cm en de hoogte ( breedte ) van de mast is 5 meter ( 500 cm ). Echter het touw zit 4 keer
om de mast gebogen, dus deel je de hoogte eerst door 4. Je krijgt dan: 1,25 meter
De lengte van de grondcirkel met straal r is dus de omtrek 2 * * 4,5 = 9
De hoogte ( breedte is 125 cm
Het vlaggentouw loopt van A naar T en als je de cilinder openvouwt ontstaat de volgende rechthoek:
T T
A A

Het vlaggentouw wordt nu dus een diagonaal en met de stelling van Pythagoras kun je dan de lengte van het
touw berekenen ( het touw gaat 4 keer om de cilinder heen ). Dus AA2 + AT^2 = AT^2. Dus 9^2 + 125^2 =
AT^2. Dus AT^2 = 16.424,43796. Dus AT = 16.424,43796^0,5 = 128,1578634. Dus 128,1578634 * 4 = 512,63
Nadat je met de stelling van Pythagoras de lengte hebt uitgerekend doe je de uitkomst weer met 4 vermenigvul-
gen en daar komt dus 512,63 cm. Dat is ongeveer 513 cm

Hoewel het antwoord klopt, begrijp ik niet waarom dit zo moet.

Joost
Iets anders - zondag 6 oktober 2019

Antwoord

Het is niet zo dat het op deze manier moet. Het is eerder een handige vondst: snij de cilinder open langs de lijn $AT$ en vouw hem uit. Dan kun je vlakke meetkunde gebruiken om het probleem op te lossen.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 6 oktober 2019



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb