De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Vraagstuk met partieel afgeleiden

Hey iedereen,

Een baggerbedrijf wenst een grote hoeveelheid zand te vervoeren van punt A naar punt B over een afstand van 1 kilometer.

Het bedrijf maakt hiervoor gebruik van een binnenschip, dat een lading overbrengt en dan onbeladen terugvaart. In onbeladen toestand vaart het schip met een snelheid van v0 = 20 km/u.

Per ton lading die het schip aan boord neemt, vermindert de snelheid met $\Delta$v = 0, 05 km/u. Hoeveel zand dient het schip voor elke reis te laden om zo snel mogelijk te werken (en dus zoveel mogelijk zand per uur te vervoeren)?

Je mag hierbij aannemen dat laden en lossen geen tijd in beslag nemen.

Zou iemand mij kunnen helpen hoe ik daaraan moet beginnen aub?

Brayan
Student Hoger Onderwijs BelgiŽ - zaterdag 20 juli 2019

Antwoord

Je kunt bijvoorbeeld een formule opstellen voor de tijd die het kost om ťťn keer heen en weer te varen met een lading van $x$ ton. Gebruik dan dat de afstand gelijk is aan het product van snelheid en tijd. De terugtijd $t_2$ is altijd het zelfde: $1=20\times t_2$, dus $t_2=\frac1{20}\,\mathrm{uur}$.

De heentijd $t_1$ is afhankelijk van $x$: $1=(20-0.05x)\times t_1$. De totale vaartijd is dus $\frac1{20}+\frac1{20-0.05x}$ uur, dat noteren we als $t(x)$.

Per uur kun je $1/t(x)$ keer heen en weer en kun je dus $x/t(x)$ ton zand vervoeren. Nu heel netjes de breuk
$$\frac{x}{\frac1{20}+\frac1{20-0.05x}}
$$uitwerken en bekijken voor welke $x$ die maximaal is.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 20 juli 2019
 Re: Vraagstuk met partieel afgeleiden  



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb