De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Differentiaalquotient

gegeven is de functie f: x1/x. Bereken df(x)/dx in x=3.
Gevraagd wordt volgens mij om het differentiaalquotient te berekenen. Ik ben als volgt te werk gegaan:
f(3)=1/3 en f(3+x)= 1/ 3+x dus
f(x)= 1/3+x - 1/3. Tot hier begrijp ik het maar dan komt de volgende stap en die ontgaat mij
= 3-(3+x)/3(3+x) =
-x/3(3+x) zodat
f(x)/x = -1/3(3+x) en de limiet hiervan voor x naar 0 is -1/9.
(het deelteken (/) wat ik gebruikt moet een deelstreep zijn
in alle gevallen)
Het is mij dus onduidelijk hoe die ene overgang heeft plaatsgevonden, kunt u mij met wat tussenstappen dat verduidelijken.
M.d.v.G
wouter

wouter
Iets anders - donderdag 13 maart 2003

Antwoord

Df(x) = f(3+Dx)-f(3)=1/(3+Dx) - 1/3
Nu worden de breuken gelijknamig gemaakt:
eerste breuk teller en noemer maal 3, tweede breuk teller en noemer maal (3+Dx)
levert op 3/(3(3+Dx)) - (3+Dx)/(3(3+Dx))=
-Dx/(3(3+Dx)) = Df(x) en dit moet nog gedeeld worden door Dx
levert uiteindelijk op -1/(3(3+Dx)) nu Dx0 dus afgeleide = -1/9

Met vriendelijke groet

JaDeX


Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 14 maart 2003


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb