De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Het aantal malen dat een getal deelbaar is door twee voorspellen

 Dit is een reactie op vraag 82642 
Beste Mijnheer Gilbert,

Hartelijk dank voor uw reactie en formules.
Nog een vervolgvraag als het mag.
Valt uit te rekenen tot welke verzameling het resultaat behoort (bij optellen en aftrekken) van getallen uit dezelfde verzameling?
Bijvoorbeeld:

160 + 96 = 256 [V5 + V5 = V8]
maar
72 + 56 = 128 [V3 + V3 = V7]

8989894 - 135798 = 8854096 [V1 - V1 = V4)
maar
135798 - 154 = 135644 [V1 - V1 = V2]

Met respectvolle groet

JePeR
Iets anders - zondag 7 augustus 2016

Antwoord

Hallo Jean-Pierre,

In mijn vorige antwoord heb ik al laten zien dat het resultaat van een optelling van twee getallen a en b uit dezelfde verzameling i te schrijven is als:

a+b = 2ip + 2iq = 2i(p+q)

waarbij p+q oneven getallen zijn. De som p+q is dan even. Het getal p+q komt voor in n van de verzamelingen, het nummer van deze verzameling noem ik j. De som p+q kan je dus schrijven als:

p+q = 2jr, hierin is r oneven.

Wanneer we dit invullen in de eerste formule, dan zie je dat we de som a+b kunnen schrijven als:

a+b = 2i2jr = 2(i+j)r

Omdat r niet deelbaar is door 2, komt a+b voor in de verzameling (i+j).

Toegepast op jouw voorbeelden:

160 en 96 zijn elementen uit de verzameling V5.
160 + 96 = 255 + 253 = 25(5+3) = 258

Het getal 8 is een element van de verzameling V3, (160+96) is een element van de verzameling √(5+3) dus V8.

72 en 56 zijn elementen uit de verzameling V3.
72 + 56 = 239 + 237 = 23(9+7) = 2316

Het getal 16 is een element van de verzameling V4, (72+56) is een element van de verzameling √(3+4) dus V7.

Voor aftrekken geldt dezelfde redenering.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 8 augustus 2016



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb