De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Lineaire DIFFVergelijking,constante coŽfficiŽnt

Goede avond,
Ik ben al een tijdje bezig met de 'oplossing' van de volgende differentiaalvergelijking op papier te krijgen:
y'+3y= 3sin2x+2cos2x-3x2-2x.
Ik stel het eerste lid =0 en los de gereduceerde vergelijking op :
y'+3y=0 en y =Ce-3x (1)
Nu neem ik C als variabele van x en ga vergelijking (1) afleiden.
dC.(e-3x)/dx -3Ce-3x+3Ce-3x= 3sin2x+2cos2x-3x2-2x
dC= Int(3sin2x.e3xdx(a) +2Intcos2x∑e3xdx (b)-3INT x2e3xdx(c)-2INt x∑e3xdx(d) INT is integraalteken
Ik kom uit voor de 4 integralen:
(a)= -e3x∑cos2x+(9/2)e3x ∑sin2x
(b)2/11.e3x∑sin2x+(3/11) e3xcos2x
(c)-x2∑e3x+2/3x∑e3x-2/9∑e3x
d()-2/3xe3x+(2/9)e3x
Invoer van deze oplossingen in vergelijking (1) bij C levert niet het resultaat op dat ik vind via Wolfram. en dat zou moeten zijn:
y=C(1).e3x-x2+sin2x.
Ergens een fout in de berekening van de constanten, vermoed ik. C als variabele beschouwen na het bekomen van de oplossing van de gereduceerde vergelijking(1)en afleiden is de 'Lagrange' methode...
Kan iemand mij helpen ?
Vriendelijke groeten,

Rik Le
Iets anders - donderdag 30 juni 2016

Antwoord

Je eerste twee integralen zijn niet correct.
Je kunt in dit geval ook een particuliere oplossing van de vorm
$$
A\sin2x+B\cos2x+Cx^2+Dx+E
$$
proberen, dat werkt vast wat sneller.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
vrijdag 1 juli 2016
 Re: Lineaire DIFFVergelijking,constante coŽfficiŽnt 


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb