De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Complexe vergelijking

Dag Wisfaq,

Ik ben al een tijdje aan het proberen om volgende vergelijking, in toepassing van DE MOIVRE ,op te lossen maar ik kom er niet uit.

(cosa+isina)·(cos2a+isin2a)·(cos3a+isin3a)=-1

Ik werkte als volgt: wetende dat i2=-1

cos(a)+isin(a) is standaard de eerste vergelijking
cos2a+isin2a= (cosa+isina)2= cos2a-sin2a+2isinacosa
cos3a+isin3a= (cosa+isina)3
= cos3(a)+3icos2(a).sin(a) +3i2sin2(a)cos(a)+i3i3sin3(a)
= cos3(a)-3cos(a)sin2(a)+((3cos2(a)sin(a)-sin3(a)))·i
= 4cos3(a)-3cos(a))+((3sin(a)-4sin3(a)).i
=((cos(a)+isin(a))((cos2(a)-sin2(a)+2isin(a)·cos(a))·
((4cos2(a)-3cos(a) +3sin(a)-4sin3(a))=-1
Ik begin mij af te vragen of er geen beknoptere methode is dan deze want het geeft enorm veel rekenwerk waar ik niet verder uitkom....
Ik vrees dat mijn methode tot oplossing wat te omslachtig is en dat er een vlottere, oplossing moet mogelijk zijn.
Graag wat hulp aub...
Groetjes
Rik

Rik Le
Iets anders - maandag 11 april 2016

Antwoord

Hallo Rik,

Wat dacht je van het gebruiken van
$(\cos(a)+i\sin(a))\cdot(\cos(2a)+i\sin(2a))\cdot(\cos(3a)+i\sin(3a)) =$
$(\cos(a)+i\sin(a))\cdot(\cos(a)+i\sin(a))^2\cdot(\cos(a)+i\sin(a))^3 =$
$(\cos(a)+i\sin(a))^6 = (\cos(6a)+i\sin(6a))$?

Groeten,

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 11 april 2016
 Re: Complexe vergelijking 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb