De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Punt op rechte berekenen om rechte hoek te maken

 Dit is een reactie op vraag 77526 
Hallo,
Ik ben niet zo duidelijk geweest. De twee punten blauwe en roze moeten een driehoek vormen met ťťn punt op de rode lijn, de hoek (punt rode lijn) moet een rechte hoek zijn naar de twee andere punten.

Als ik het zo zie gaat het niet met de punten die ik gaf, m maar met vb (5, -2 ) en ( -2 ,3) of andere punten wel. Vraag me af of er een methode is om dit te vinden...
Alvast bedankt

peter
2de graad ASO - dinsdag 26 januari 2016

Antwoord

Hallo Peter,

Als ik het goed begrijp, gaat het om het volgende:
Je twee punten noem ik A (in jouw tweede voorbeeld:(5,-2)) en B (-2,3). Op de lijn ligt een punt P. Nu wil je P zodanig kiezen dat de lijn PA loodrecht staat op de lijn PB. Dit kan je als volgt aanpakken:

De coŲrdinaten van punt P zijn (x , 2x-4). We zoeken de richtingscoŽfficiŽnt van de lijn PA. Hiervoor berekenen we:

yP-yA = 2x-4 - (-2) = 2x-2
xP-xA = x-5
richtingscoŽfficiŽnt PA = (2x-2)/(x-5)

Op dezelfde manier berekenen we de richtingscoŽfficiŽnt van PB:
yP-yB = 2x-4 - 3 = 2x-7
xP-xB = x-(-2) = x+2
richtingscoŽfficiŽnt PB = (2x-7)/(x+2)

Wanneer twee lijnen met richtingscoŽfficiŽnten rc1 en rc2 loodrecht op elkaar staan, dan geldt:
rc2=-1/rc2

Wanneer PA en PB loodrecht op elkaar staan, geldt dus:

(2x-2)/(x-5) = -(x+2)/(2x-7)

Kruislings vermenigvuldigen, op 0 herleiden, volgens mij vind je dan een kwadratische vergelijking. Deze heeft 0, 1 of 2 oplossingen voor xP. Invullen van xP in de vergelijking van de lijn levert yP.

Lukt het hiermee?

Je kunt het ook nog op een heel andere manier aanpakken:
Teken de cirkel waarvan lijnstuk AB de middellijn is. De snijpunten van cirkel en lijn zijn het gevraagde punt P, zie
Wikipedia: Stelling van Thales.
Het berekenen van de coŲrdinaten van P is op deze manier wat omslachtiger, maar je ziet wel gelijk hoeveel oplossingen er zijn:

Lijn snijdt de cirkel: 2 oplossingen
Lijn raakt de cirkel: 1 oplossing
Lijn ligt buiten de cirkel: geen oplossing.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 26 januari 2016


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2018 WisFaq - versie IIb