De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Een differentiaalvergelijking

 Dit is een reactie op vraag 76537 
Dag Tom,
Ik heb een probleem met dit soort" partieŽl"integreren.
Integreer ik naar x dan zijn alle "y constanten. Leg nog eens wat verder uit als je even tijd hebt .
Groeten,
Rik

Rik Le
Iets anders - dinsdag 13 oktober 2015

Antwoord

Beste Rik,

Als je bijvoorbeeld $x\sqrt{x^2+y^2}-y$ naar $x$ integreert, dan mag de 'integratieconstante' nog afhangen van $y$, het is dus een (onbekende) functie van $y$. Noteer bijvoorbeeld als volgt:
$$\int x\sqrt{x^2+y^2}-y \,dx = \frac{(x^2+y^2)^{3/2}}{3}-xy+c(y)$$met $c(y)$ een nog te bepalen functie van $y$. Om te weten wat $c(y)$ moet zijn, kan je deze primitieve (naar $x$) terug afleiden naar $y$ en vergelijken met:
$$\frac{\partial f}{\partial y} = y\sqrt{x^2+y^2}-x$$waaruit zal volgen dat $c'(y) = 0$ zodat $c(y)=c$ (in dit geval) gewoon een constante is.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 14 oktober 2015


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb