De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Een waarde berekenen vanaf een term

ik begrijp een vraag niet en het uitwerkingenboek ook niet:

Gegeven is de recursieve formule un=u(n-1)+u(n-1)/1+u(n-1) met u0=25 a en b zijn wel te doen c is echt een raadsel

a Bereken in twee decimalen nauwkeurig de 7 de en 8ste term
b. vanaf de hoeveelste term is un>35
c. Vanaf welke n is un-u(n-1)>0,975

c.un=u(n-1)+u((n-1))/(1+u(n-1))
un-u(n-1)=u(n-1)/(1+u(n-1))
vanaf hier kan ik het niet meer volgen
dus u(n-1)/(1+u(n-1))>0,975
u(n-1)>0,975+0,975u(n-1)
0,025u(n-1)>0,975
u(n-1)>39
u14=38,56
u15=39,53
en u16=40,51
Dus vanaf n=16

bouddo
Leerling mbo - donderdag 3 januari 2013

Antwoord

u(n) - u(n-1) = u(n-1)/(1 + u(n-1)) op grond van de gegeven formule.
Om het wellicht eenvoudiger te maken, noemen we u(n-1) even p.
Dan is de breuk waarover het moet gaan, te schrijven als p/(1 + p) en de vraag komt er dus op neer te bepalen wanneer p/(1 + p) > 0,975
Dat laatste getal is overigens 39/40 zodat de gestelde vraag nu neerkomt op 40p > 39(1 + p) ofwel p > 39
Terug naar de betekenis van p, staat er dus u(n-1) > 39

Je zou nu van de gegeven rij term voor term kunnen gaan opschrijven totdat je eindelijk boven de 39 uitkomt, maar dat kan behoorlijk lang duren.
Daarvoor gebruik je dus de GR en blijkbaar is dan u(14) = 38,56 (dus nog te klein) en u(15) = 40,51 (dus boven de 39).
Op de plaats waar nu het rangnummer 15 staat, heb jij n-1 staan.
Dat wil zeggen dat n-1 = 15 in orde is, dus n = 16 is de eerste n waarbij het klopt.
Kijk trouwens wel uit met nu te zeggen dat het vanaf n = 16 altijd boven de 39 zit. Het mag niet worden uitgesloten dat de rij getallen ineens weer omlaag gaat en daardoor weer onder de 39 komt.

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 3 januari 2013



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb