De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Bepalen van een integraal

Ik zie door de bomen het bos niet meer bij het moeten bepalen van de volgende integraal

$\int{}$(x3+x)$\sqrt{ }$(x2+1)dx

Bouddo
Leerling mbo - dinsdag 31 januari 2012

Antwoord

Allereerst maar 's proberen om de zaak te vereenvoudigen:

$
\int {\left( {x^3 + x} \right)\sqrt {x^2 + 1} } \,dx = \int {x\left( {x^2 + 1} \right)\sqrt {x^2 + 1} } \,dx = \int {x\left( {x^2 + 1} \right)^{1\frac{1}{2}} } dx
$

Nu staat er toch weer iets als f(g(x))∑g'(x). De primitieve zal iets worden als:

$
\left( {x^2 + 1} \right)^{2\frac{1}{2}}
$

DifferentiŽren geeft:

$
2\frac{1}{2}\left( {x^2 + 1} \right)^{1\frac{1}{2}} \cdot 2x = 5x \cdot \left( {x^2 + 1} \right)^{1\frac{1}{2}}
$

Dat is op een factor 5 na helemaal goed...

De primitieve is:

$
F(x) = \frac{1}{5}\left( {x^2 + 1} \right)^{2\frac{1}{2}} + C
$

Zeker weten? Bepaal de afgeleide maar!

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 31 januari 2012



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb