De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Re: Vergelijking oplossen

 Dit is een reactie op vraag 66708 
Beste Tom,

Bedankt tot zover. Nee ik weet niet hoe ik punten van de eenheidscirkel kan beschrijven als e-macht. Zou ik wel graag willen weten!
De andere formule (Euler?) ken ik wel maar ik zie het niet.
Hoe kan dat?
Bij voorbaat dank je wel.

Jack
Student hbo - maandag 23 januari 2012

Antwoord

Beste Jack,

Als je de formule $e^{it} = \cos t + i \sin t$ kent, dan hoef je maar $t = -\pi /2$ te nemen en er rolt precies uit wat we nodig hebben want de cosinus is dan 0 en de sinus -1, dus:

$\displaystyle -i = e^{-i\frac{\pi}{2}}$

Meer algemeen: elk punt op de complexe eenheidscirkel (dus straal 1 en middelpunt in z = 0) kan je schrijven in de vorm $e^{it}$. Met dezelfde formule van Euler kan je immers inzien dat zo'n punt op die cirkel altijd cartesische co÷rdinaten (cos(t),sin(t)) heeft. Voor sommige complexe getallen is die hoek erg eenvoudig af te lezen.

Om -i te schrijven als een e-macht hoef je dus maar in te zien dat dit 'punt' (complex getal) ligt bij een hoek van -90░ = -p/2 (radialen) met de x-as, vandaar $e^{-i\pi /2}$.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 23 januari 2012
 Re: Re: Re: Vergelijking oplossen 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3