De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Hoek tekenen zonder gradenboog

 Dit is een reactie op vraag 64954 
Goede morgen Floor,

Natuurlijk ! De nagel op de kop !
Tg(36,9)=0,750821238 afgerond 0,75.
Nemen we als Co÷rdinaat (1,tg(a)) dan hebben we CO(1;0,75)
met x=1 en y =0.75 en dan is de hoek mooi te tekenen
vertrekkend uit de oorsprong naar de gegeven co÷rdinaat !
Maar het blijft dan wel een benadering....
Maar het blijft voor mij een raadsel waarom de leerkracht van een van onze acht (!) kleinkinderen dan vraagt de hoek exact te tekenen met de passer !!
Dit exact uitvoeren kan dus blijkbaar niet ! En met afronding tot 0,75 op de y-as hebben we toch geen passer
nodig en nemen we vanuit de oorsprong toch gewoon 3/4 van de Y- as tussen 0 en 1 op de goniometrische cirkel...
Graag toch nog en korte reactie !
Mijn reactie naar mijn kleinzoon toe was identiek aan de uwe
en zo moet het probleem ook uitgevoerd worden.Maar hij heeft het probleem niet kunnen oplossen met passer gedurende de ondervraging in de klas....
Nog een mooie zondag,
RIK

Rik Le
Iets anders - zondag 5 juni 2011

Antwoord

Het exact construeren van een hoek van 36,9 graden met passer en liniaal is niet mogelijk. Van 36 graden wel. Die laatste hoort bij de "centrale hoek" van een regelmatige tienhoek (die is construeerbaar, zie bijvoorbeeld de link hieronder). De lijnstukken vanuit het midden van de regelmatige tienhoek naar de hoekpunten maken onderling een hoek van 360/10 = 36 graden.

Zou een hoek van 36,9 graden geconstrueerd kunnen worden, dan ook een hoek van 0,9 graden - immers het verschil. Een hoek van 0,9 graden is de centrale hoek bij een regelmatige vierhonderdhoek. Maar die is niet construeerbaar, want 400 is deelbaar door 25, het kwadraat van een Fermat-priemgetal.

Zie Veelhoeken - constructie

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 9 juni 2011


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2018 WisFaq - versie IIb