De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Zwaartepunt van een driehoek

Hallo,
ik zit vast met het berekenen van de x- en y-co÷rdinaten van een driehoek. Ik heb bvb. een rechthoekige driehoek met als lengte 6 meter en als hoogte 20 meter. Normaal gezien moet je dit met de formule int(xdA)=0 over A en int(ydA)=0 over A doen, maar ik geraak hier niet echt uit.
Kan u mij hier misschien mee helpen?

Dankjewel,
Stri

stri
3de graad ASO - maandag 23 december 2002

Antwoord

Hoi,

Als je de x en y-co÷rdinaten van de hoekpunten van een veelhoek hebt, dan vind je de co÷rdinaten van het zwaartepunt door het gemiddelde van die co÷rdinaten te nemen (we veronderstellen een homogene massaverdeling). Voor een driehoek is het zwaartepunt dan z((x1+x2+x3)/3,(y1+y2+y3)/3).

Als je met een niet-homogene verdeling te maken hebt, bv: met dichtheid r(x,y), dan moet je dit met gewogen gemiddeldes of integralen doen...:
xz=int(x.dm)/int(dm)=int(x.r(x,y).dA)/m
yz=int(y.dm)/int(dm)=int(y.r(x,y).dA)/m

Als je verdeling homogeen is, dan kan je r(x,y) wegdelen, je vindt dan:
xz=int(x.dm)/int(dm)=int(x.dA)/A
yz=int(y.dm)/int(dm)=int(y.dA)/A

Je moet dan enkel nog dA schrijven als h(x).dx of h(y).dx en dit kan je op basis van de vergelijkingen van de zijden van je driehoek.

Groetjes,
Johan

andros
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 29 januari 2003



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb