De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  gastenboek |  wie is wie? |  verhalen |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Bewerkingen met reeksen

 Dit is een reactie op vraag 60792 
bedankt voor uw antwoord.

Dus voor het bepalen van orde moet je gaan zien ('hoeveel maakt dit singulier punt de noemer 0' min 'hoeveel maakt dit singulier punt de teller 0' == in dit geval dus 3-1=2.

Nu een andere vraag: vanwege de orde mag de limietformule gebruikt worden : ik krijg het volgende:
lim d/dz ( [(cospz . z. (z-1/2)2 ] / [sinpz .(2z-1)3]) == als je deze afgeleide binnen gaat oplossen op volgende manier(f/g)'=f'.g-f.g' / g2 dan ben je toch urenlang bezig ?? en nadien limiet nemen en met geluk nog dat je misschien L'hopital niet moet gebruiken. Is er een andere manier om dit snel en efficient op te losse? mvg

AA
Student universiteit BelgiŽ - zaterdag 21 november 2009

Antwoord

Beste AA,

Er valt natuurlijk wat weg, herschrijf:

(2z-1)3 = 8(z-1/2)3

Dan heb je nog de volgende functie af te leiden:

z.cot(pz)/(8(z-1/2))

Maar ik ben het ermee eens dat dit afleiden en dan nog l'HŰpital te moeten gaan gebruiken, vrij 'vervelend' is.

Je kan proberen de Laurentreeks weer op te stellen en de coefficiŽnt van de term in 1/(z-1/2) te vinden. Voor cot(pz) geldt voor z rond 1/2 (gewoon Taylor), in eerste orde:

-p(z-1/2) + (derde orde en hoger)

Voor z.cot(pz)/(2z-1)3 moet je nog vermenigvuldigen met:

z/(2z-1)3 = 1/(16(z-1/2)3) + 1/(8(z-1/2)2)

De enige term in de uiteindelijk reeks (product van beide) in 1/(z-1/2) is afkomstig van het product van -p(z-1/2) met 1/(8(z-1/2)2), dus:

-p/(8(z-1/2))

Hetgeen direct -p/8 als residu levert.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 21 november 2009
 Re: Re: Bewerkingen met reeksen 



home |  vandaag |  bijzonder |  gastenboek |  statistieken |  wie is wie? |  verhalen |  colofon

©2001-2024 WisFaq - versie 3