De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Poolvergelijking omzetten

Beste,

Om mijn vraag te kunnen stellen zal ik heel het voorbeeld uit mijn cursus moeten geven. Het voorbeeld komt uit het onderdeel oppervlakten berekenen met behulp van integralen.

∑ Deel van het vlak begrensd door de krommen met poolvergelijking r=2∑R∑cosa, hoek=0, hoek=p/4

Voor het elementaire oppervlaktedeeltje dS vinden we:
dS=1/2∑R≤∑da=1/2∑4∑R≤∑cos≤a∑da

Hieruit berekenen we de oppervlakte S:
S=de integraal van hoek=0 tot hoek=p/4 van dS=1/4∑R≤∑(p+2)

Dan staat er geschreven:
De poolvergelijking van deze cirkel kan vrij eenvoudig worden omgezet naar een cartesische vergelijking. We vinden (x-R)≤+y≤=R≤

Nu is mijn vraag: hoe gebeurt die omzetting van de poolvergelijking naar de cartesische vergelijking?

Katrie
Student Hoger Onderwijs BelgiŽ - zaterdag 23 augustus 2008

Antwoord

Katrien,
Dat gaat zo: wetende dat x=rcosaen x2+y2=r2=2Rrcosa=2Rx ,vinden we dat x2-2Rx+y2=0,zodat (x-R)2+y2=R2.

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 23 augustus 2008



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb