De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Verband tussen straal, oppervlakte en inhoud

Hallo,

Wij hebben een vraag over het verband tussen I, r en O.

I = de inhoud van een regelmatig veelvlak
r = de straal van de grootst mogelijke bol die IN het regelmatige veelvlak past.
O = de oppervlakte van het regelmatige veelvlak.

Hiertussen bestaat een eenvoudig verband. Kunt u ons helpen? we hebben al heel veel dingen geprobeerd, maar komen er niet uit.
Groeten

Aukje
Leerling bovenbouw havo-vwo - vrijdag 8 februari 2008

Antwoord

Beste Aukje,

Als je alle hoekpunten van een regelmatig n-vlak verbindt met het middelpunt van het veelvlak, dan krijg je n piramides.
De inhoud van het hele veelvlak is dan n keer zo groot als de inhoud van
één zo'n piramide.
Inhoud piramide=oppervalk van een zijvlak ×straal ingeschreven bol/3.
Oppervlak zijvlak=totale oppervlak/n.
Daarmee heb je een eenvoudig verband tussen de inhoud, de straal van de ingeschreven bol en het totale oppervlak.

Als je de verschillende waarden echt wil berekenen voor een veelhoek met zijden 1 kan je kijken op:
http://mathworld.wolfram.com/PlatonicSolid.html
Daar is r=straal ingeschreven bol, R=straal omschreven bol, A=oppervlak van één zijvlak en V=totale inhoud.

Succes,Lieke.

ldr
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 10 februari 2008



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb