De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Cyclometrische vergelijkingen

hoi, vraagje
de vraag is los op: Bg sin x +Bg sin xV3 = p/2
berekening:
Bgsinx=a =sin a=x en a ]-;+[
BgsinxV3=b = sinb=xV3 en b " "
a+b = p/2
sin(a+b) = sin(p/2)
sina*cosb + cosa*sinb = 1
cosb =?
sinb = xV3
cos2b = 1 - sin2b = 1-3x2
cosa=?
sina= x
cos2a = 1- sin2a = 1-x2
x*V(1-3x2) + V(1-x2)*xV3 = 1
x2 - 3x4 +3x2 -3x4 =x
-6x4+4x2=1
stel x2 = t
-6t2+4t -1 = 0
als ik dat uitkom kom ik een getal met 0.98... ofzoiets uit
en het antwoord moet zijn: x = 1/2
kunt u zeggen of aantonen ofzo waar mijn fout zit
alvast bedankt
groetjes

yann
3de graad ASO - donderdag 7 februari 2008

Antwoord

Yann,
sinb=sin(p/2-a)=cosa=(1-x2)=x3.Zo moet let wel lukken.

kn
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 7 februari 2008
 Re: Cyclometrische vergelijkingen 


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb