De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Goniometrische vergelijkingen

 Dit is een reactie op vraag 54026 
Beste MBL

De eerste was dankzij je tip om het om te zetten in een tweedegraads op 1 minuutje af, toch blijf ik ergens halverwege vaststeken met die tweede. Wat ik al heb is het volgende:

sinx+sin2x+sin3x = 1+cosx+cos2x
= (sinx+sin3x)+sin2x = 1+cosx+2cos2x-1
= (2sin2x.cosx)+(2sinx.cosx) = cosx+2cos2x
= 2sin2x.cosx + 2sinx.cosx = cosx(1+2cosx)
= 2cosx(sin2x+sinx) = cosx(1+2cosx)

Is het dan de bedoeling dat ik opnieuw de formule van simpson gebruik bij de sinusen? En zie ik soms een formule over het hoofd bij de cosinusen? Hartelijk bedankt als je hierop nog eens wilt reageren!

Nagare

Nagare
3de graad ASO - maandag 21 januari 2008

Antwoord

Als je de laatste regel van je eigen uitwerking als startpunt neemt, schrijf dan aan de linkerkant voor sin(2x) eerst 2.sin(x).cos(x) en zet dan de gemeenschappelijke sin(x) vr de haakjes. Je houdt tussen haakjes 2cos(x) + 1 over. En dat staat rechts ook tussen haakjes!
Na 2cos(x) + 1 = 0 te hebben opgelost, kan die factor weggedeeld worden.

MBL

MBL
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 21 januari 2008


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb