De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Laplace convolutie

Ik heb het volgende probleem met een deel van het bewijs van convolutie:

het gaat over een beginvoorwaardeprobleem waarin de oplossing zich opsplitst in 2 homogene en 1 particuliere oplossing.
Nu wordt er het volgende gezegd:

L{yp(t)}= F(s) / (as2+bs+c)
dit snap ik wel, maar het is de volgende stap die ik niet begrijp:

het vorige rechterlid = 1/a * (L{F(s)} * L{yh(t)})

ik begrijp het invullen van de waarden wel, maar ik zie niet in hoe je een laplace kan nemen van F(s), laplace beeldt namelijk t-waarden uit in functie van s.

Daarom dacht ik dat die L{F(s)} eigenlijk de inverse laplace moet zijn!

kan dit kloppen?

Alvast bedankt

Mattis
Student Hoger Onderwijs BelgiŽ - zaterdag 19 januari 2008

Antwoord

Beste Mattis,

Er komt maar geen reactie op je vraag. En ik zie ook niet waar je heen wilt. Misshien kun je wat meer vertellen over het probleem waar je aan werkt?

Ik zie nauwelijks verband tussen de twee vergelijkingen. Een product van laplace getansformeerden duidt meestal op een convolutie in de oorspronkelijke ruimte. Maar, dat zie ik nergens. Verder gebruik je nog yp(t) en yh(t). Misschien zit daar verschil. Maar het kan ook gewoon een typfout zijn?

Ik hoop dat je wat meer kunt vertellen en dat je je dan kunnen helpen.
Groet. Oscar

os
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 27 januari 2008



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb