De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Convolutie: wisselen van integratievolgorde

Ik heb een probleem met het bewijs van convolutie. Het bewijs gaat alsvolgt:

£{f(t)∑g(t)}= integraal van 0 tot e^(-st)(integraal van 0 tot t f(u)g(t-u) du)dt
=integraal van 0 tot integraal van u tot (f(u)g(t-u)e^(-st) dt du
=integraal van 0 tot (f(u)e^(-su))intgraal van u tot (g(t-u)e^(-s(t-u)) dt du
En dan nog p= t-u substitueren en dan lukt da wel. Maar de overgaan van de eerste stap naar de tweede begrijp ik niet. Hoe de twee integralen zijn samengevoegd en de grenzen aangepast is mij niet echt duidelijk?

Dank bij voorbaat

Boris
Student Hoger Onderwijs BelgiŽ - donderdag 10 januari 2008

Antwoord

Dat kan je best zien met een figuur: teken een assenstelsel met t horizontaal en u verticaal. In je eerste uitdrukking integreer je over een gebied, dat gegeven wordt door 0t en 0ut. Dat eerste betekent dat je t-waarden zich op de rechter halfrechte bevinden, het tweede betekent dat je u-waarden zich bevinden tussen de rechten u=0 en u=t. Teken deze beide rechten: de eerste is de horizontale t-as, de tweede is de bissectrice. Het gebied waarover je integreert is dus een driehoek die oneindig ver doorloopt, ťťn achtste van het hele vlak.

Vermits je de integratiegrenzen wil omwisselen, wil je ditzelfde gebied nu uitdrukken door eerst te zeggen welke u-waarden je krijgt, en dan welke t-waarden daarbij horen. Het gebied ligt volledig boven de t-as, dus er geldt dat 0u. Welke t-waarden horen er bij een willekeurige u-waarde? Dat zijn de t-waarden rechts van de bissectrice, dus t-waarden waarvoor geldt dat ut. Zo bekom je de integratiegrenzen.

Je kan die grenzen natuurlijk ook bekomen door de ongelijkheden te herschrijven, maar het gaat volgens mij makkelijker met een snelle schets...

Groeten,
Christophe.

Christophe
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 10 januari 2008



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb