De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oplossing vraag

Bereken de oplossingen van de vergelijking en geef de uitwering van:

(1+3i)x2-3(1+3i)x+15/8+(93)/4i=0

Jan-Ti
Student universiteit - woensdag 5 december 2007

Antwoord

Hallo

Om rekenwerk te besparen deel ik de vergelijking door (1+3.i) :

x2 -3.x + 3/32.(23+3.i) = 0

De discriminant b2-4.a.c = 9 - 3/8.(23+3.i) =

3/8(1-3.i)

Om hiervan de vierkantswortels te berekenen maken we gebruik van de modulus en het argument :
mod(3/8(1-3.i)) = 3/4
arg(3/8(1-3.i)) = -p/3

Van de vierkantswortels zijn dus :
mod(vkw) = 3/2
arg(vkw) = -p/6 en 5p/6

De vierkantswortels uit de discriminant zijn dus:
1/4(3-3.i)

De oplossingen zijn :
3/2 + 1/8(3-3.i) =
15/8 - 3/8.i

en

3/2 - 1/8(3-3.i) =
9/8 + 3/8.i

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 5 december 2007



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb