De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Limiet ve goniometrische functie

Hallo,

ik heb een probleem met de volgende limiet :
lim[x-0] (sin x/x)^(1/x2). Deze levert de onbepaalde vorm 1^¥. Hoe los ik dit nu op, gebruik ik de regel van l'Hopital tot ik een geldig resultaat uitkom?

groeten

Hans
3de graad ASO - maandag 3 december 2007

Antwoord

Beste Hans,

De regel van l'Hôpital kan je enkel gebruiken op een onbepaaldheid van de vorm 0/0 of ±¥/±¥. Je kan jouw onbepaaldheid wel tot zo'n vorm herleiden, door gebruik te maken van:

xy = exp(ln(xy)) = exp(y.ln(x))

Wat je ook kan doen is sin(x) vervangen door de benadering van de Taylorreeks: sin(x) x-x3/6 voor x klein. Probeer de limiet dan te herleiden naar een standaardlimiet (definitie van het getal e).

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 3 december 2007


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb