De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Moeilijk oefening op verdubbelingsformules, simpson, (een combinatie oefeni

Bewijs dat in elke driehoek met hoeken aben g geldt:

cos2a+cos2b + cos2g = -1 -4 cosacosbcosg.

in woorden : de cosinus van de dubbele hoek alpha + de cosinus van de dubbele hoek beta + de cosinus van de dubbele hoek gamma is gelijk aan min één min vier cosinus alpha cosinus beta cosinus gamma

Dries
3de graad ASO - woensdag 28 november 2007

Antwoord

Om te beginnen: in een driehoek geldt a+b+g=180°.
Dus bijvoorbeeld: g=180°-a-b

Ik gebruik nu verder a,b en c i.p.v. a,b eng
Invullen levert:
cos(2a)+cos(2b)+cos(360-2a-2b)=-1-4cos(a)cos(b)cos(180-a-b)
Oftewel
cos(2a)+cos(2b)+cos(2a+2b)=-1+4cos(a)cos(b)cos(a+b)

Begin nu met het rechterlid:
-1+4cos(a)cos(b)cos(a+b)
=-1+4cos(a)cos(b)(cos(a)cos(b)-sin(a)sin(b))
=-1+4cos2(a)cos2(b)-4cos(a)sin(a)cos(b)sin(b)
=-1+(cos(2a)+1)(cos(2b)+1)-sin(2a)sin(2b)
=-1+cos(2a)cos(2b)+cos(2a)+cos(2b)+1-sin(2a)sin(2b)
=cos(2a)+cos(2b)+cos(2a)cos(2b)-sin(2a)sin(2b)
=cos(2a)+cos(2b)+cos(2a+2b)
en dit is gelijk aan het linkerlid.

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 28 november 2007



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2021 WisFaq - versie IIb