De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Re: Aantrekker en aantrekkingsgebied bewijzen

 Dit is een reactie op vraag 51018 
het gaat over complexe getallen. het inleidende verhaaltje er bij is; in het hoofdstuk over itereren hebben we gezien dat de functie f(x)=x2-0,5 als aantrekker heeft het punt x=-0,366. alle startwaarden tussen -1,366 en 1,366 worden bij het itereren naar deze aantrekker toe getrokker. het interval -1,366;1,366 wordt ook wel het aantrekkingsgebied genoemd, het is de verzameling van alle startwaarden die naar de aantrekker worden toegetrokken. aan het eind van dat hoofdstuk hebben we gezien dat je ook met complexe getallen kunt itereren. ook in het complexe vlak kunnen we dus spreken over aantrekkers en aantrekkinggebieden. het aantrekkingsgebied is in dit geval een deel van het complexe vlak.
en dan is de vraag:Gegeven is de functie: F(z)=z2. bewijs dat in dit geval z=0 de aantrekker is en het aantrekkingsgebied de cirkelschijf is die wordt beschreven door |z|1. hoe moet je dit bewijzen?

sieg
Leerling bovenbouw havo-vwo - dinsdag 29 mei 2007

Antwoord

Met andere woorden, te bewijzen: definieer z0=z en telkens zn+1=F(zn) dan geldt lim zn=0 als |z|1 en de limiet is niet 0 als |z|1. Toon eerst eens aan dat zn=z2n -- z-tot-de-macht(2-tot-de-macht-n). Dan is het niet moeilijk de eerste limiet te bepalen; voor het geval |z|1: de modulus van zn is altijd ten minste 1.

kphart
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 31 mei 2007
 Re: Re: Aantrekker en aantrekkingsgebied bewijzen 



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb