De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Vergelijking oplossen

Hey allemaal,

Ik moet de vergelijking 3z4 + (4-3i)z3 + 4(1-i)z2 + (1-4i)z + i = 0 oplossen.

Hoe moet ik hieraan beginnen?

Alvast bedankt,

Jeroen

Jeroen
3de graad ASO - zaterdag 26 mei 2007

Antwoord

Dag Jeroen,

Spannende vraag. Tweedegraads vergelijkingen los je (ook in ) op met de abs-vergelijking. Voor derdegraadsvergelijkingen kun je de formule van Cardano gebruiken, maar dat is niet eenvoudig. Voor vierdegraadsvergelijkingen is er geloof ik ook zo'n formule, maar dat is vast niet de bedoeling.

Bij dit soort vergelijkingen is meestal de bedoeling dat je één oplossing kunt vinden door uit te proberen (hier eigenlijk twee). Met een staartdeling kun je dan de vergelijking vereenvoudigen. Vind je bij voorbeeld een oplossing z=2 kan kun je de vergelijking delen door (z-2). Als je dat twee keer kunt doen houdt je een tweedegraads vergelijking over.

Meestal als je dit soort vergelijkingen krijgt zijn één of meer oplossingen makkelijk te vinden. B.v. z=1 of z=2. Die kun je proberen te zoeken. Een andere mogelijkheid is om eerst met een benadering de oplossingen te zoeken.
Als er een een heel getal is, of een eenvoudige breuk, dan kun je controleren of het klopt en verder gaan.

Ik heb al een en ander geprobeerd. Maar nog geen eenvoudige oplossing gevonden. In ieder geval geen heel getal. (overigens kun je bewijzen dat de modulus van z voor alle oplossingen kleiner is dan 4). Klopt de vergelijking wel helemaal.

Groet. Oscar

os
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zaterdag 26 mei 2007



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb