De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Massa van een kegel

De massieve kegel K wordt beschreven door de ongelijkheden

K: x2+y2(z-5)2

De massadichtheid (massa per volume eenheid) p(x,y,z) in het punt (x,y,z) wordt gegeven door

p(x,y,z) = x2z

Bereken de massa van de kegel K.

Jelle
Student universiteit - donderdag 31 oktober 2002

Antwoord

Hoi,

Vermoedelijk staat er in je opgave nog een ongelijkheid die z beperkt tot [0,5], anders krijgen ze een oneindig volume.
We begrijpen dus: K is een kegel met grondvlak een cirkel in het XY-vlak met centrum o en straal 5 en als top (0,0,5).

Op een punt u(x,y,z), heb je een geconcentreerde massa dV=p(x,y,z).dxdydz. De massa M van de kegel K is dan de (drievoudige) integraal van p(x,y,z) over K.

M = ˛(van x = -5 t/m 5) ˛(van y = -sqrt(25-x2) t/m -sqrt(25-x2)) ˛(van z = 0 t/m 5-sqrt(x2+y2) van: x2z.dxdydz

Het vervelende is dus dat het interval voor y waarover we integreren afhankelijk is van x en ook het interval voor z. De overgang naar cilinderco÷rdinaten maakt het iets makkelijker.

x=r.cos(phi)
y=r.sin(phi)
z=zeta
Een elementair volume dxdydz in carthesiaanse co÷rdinaten komt overeen met een elementair stukje van een cilinderschil r.dphi.dr.dzeta.

Zodat: M =
˛(van r = 0 t/m 5) ˛(van phi = 0 t/m 2*Pi) ˛(van zeta = 0 t/m 5-r) van: r.r2.cos2(phi). zeta.dphi.dr.dzeta=
˛(van phi = 0 t/m 2*Pi) van cos2(phi)dphi . ˛(van r = 0 t/m 5) van [r3 ˛(van zeta = 0 t/m 5-r) van zeta.dzeta].dr =
˛(van phi = 0 t/m 2*Pi) van cos2(phi)dphi . ˛(van r = 0 t/m 5) van Ż.r3 (5-r)2dr =ů

Vanaf hier zijn het klassieke enkelvoudige integralen die geen probleem kunnen opleveren.

Groetjes,
Johan

andros
Vragen naar aanleiding van dit antwoord? Klik rechts..!
maandag 4 november 2002



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb