De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Uitwerken zonder haakjes

Hallo,
Voor een PO moeten wij een aantal complexe getallen zonder haakjes uitwerken. We weten inmiddels dat (cos φ + i sin φ)n = cos nφ + i sin nφ
Er wordt dan op een gegeven moment gevraagd: (1/23-1/2i)(1/22-1/22i)2
en (-i)/(1/23+1/2i) uit te werken zonder haakjes. Waarbij we een tekening moeten maken. Ik loop hier vast omdat ik niet weet hoe ik hier aan moet beginnen. Ik hoop dat ik hiermee geholpen kan worden.

Anouk
Leerling bovenbouw havo-vwo - zondag 15 april 2007

Antwoord

Hoi Anouk,

Nog iets algemener: (cosj+isinj)(cosq+isinq)=cos(j)+isin(j)
Zie je dat jouw formule hier uit volgt?

Voor je berekenng moet je dus een j zien te vinden zdd cosj=1/23 en sinj=1/2. Dat kan gelukkig omdat (1/23)2+(1/2)2=1. En dan ook nog een q zdd cosq=1/22 en sinq=-1/22. En dan kun je aan de slag. Je hebt het bovenstaande wel twee keer nodig. Ook de tweede opgave is zo te doen.

Het tweede deel heeft te maken met de betekenis van de notatie: cosj+isinj. Dit betekent dat je een complex getal kunt tekenen als een punt op een 2-dimensionaal vlak. De x-coordinaat is het rele deel van je getal en de y-coordinaat het imaginaire deel. Omdat de getallen waar jij mee werkt met cosj+isinj worden opgeschreven liggens ze in dat 2-dimensionale vlak blijkbaar op de eenheidscirkel. En j is de hoek met de x-as.

De formule betekent nu ook iets moois. Blijkbaar geldt dat als je twee complexe getallen vermenigvuldigd je de hoeken die je in het complexe vlak getekend hebt gewoon kunt optellen. Dus ligt het eerste hoek op de eenheidscirkel op een hoe van 25 met de x-as en het tweede getal op een hoek van 40 met de x-as. Dan ligt het product van de twee getallen ook op de eenheidscirkel maar op een hoek van 65. Etc. (deze getalen zijn natuurlijk niet het antwoord op jouw vraag). Die hoek is overigens zo belangrijk dat hij een naam heeft. Die hoek die een complex getal getekend op een 2-dimensionaal vlak maakt met de x-as noem je het argument van dat getal.

Nou. Ik hoop dat het hiermee gaat.

Er is overigens een derde manier. Waarop je ook kunt zien dat dat allemaal klopt. Je kunt namelijk gewoon de haakjes wegwerken net zoals je dat met rele getallen doet. Je krijgt dan ook termen met i2 erin maar daar gebruik je i2=-1. Dit is de eigenlijke manier waarop je getallen in het complexe getal verminigvuldigt (of wist je dat al). De bovenstaande (zeer nuttige) formule is daarvan afgeleid. In ieder geval zou ik het zo ook eens even narekenen om te controleren of je antwoord klopt.

Groet. Oscar

os
Vragen naar aanleiding van dit antwoord? Klik rechts..!
zondag 15 april 2007



klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2020 WisFaq - versie IIb