De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oppervlakte vlakdelen parametervoorstelling

Het punt A doorloopt een figuur L met parametervoorstelling x=cost en y=costsint.
Een vergelijking in x en y van het lemniscaat L is x4 -x2+y2 =
1. Bewijs dat de coordinaten van A voldoen aan deze vergelijking.
(ik weet in ieder geval dat ik hiervan kan maken: (cos(t))4 - (cos(t))2 +(cos(t))2(sin(t))2)
2. Bereken de oppervlakte van de beide vlakdelen die door L worden ingesloten, waarbij de primitieve in de vorm van:
F(x) = a(1-x2)b

Ik hoop dat u mij kunt helpen, vooral de tweede vraag gaat natuurlijk over integreren.
Mvg,
Maik

Maik
Leerling bovenbouw havo-vwo - donderdag 7 december 2006

Antwoord

Beste Maik,

Even een factor cos2(t) buiten haakjes brengen:

cos4(t)-cos2(t)+sin2(t)cos2(t) = cos2(t)(cos2(t)-1+sin2(t))

Wat weet je van cos2(t)+sin2(t)?

De grafiek is volledig symmetrisch, laten we een stuk bekijken door de positieve wortel te nemen:

y2 = x2-x4 = x2(1-x2) y = x(1-x2)

Als je dit integreert van 0 tot 1, heb je een kwart van de totale oppervlakte en de helft van n van de 'lobben'.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
donderdag 7 december 2006
 Re: Oppervlakte vlakdelen parametervoorstelling 


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb