De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Foutfunctie

Hoi,
Ik heb een probleem. Ik moet het volgende aantonen:
Je hebt vierkant S=[-a,a]^2
Toon aan dat met behulp van poolcoordinaten de dubbele integraal overgaat in een enkele integraal:
˛˛(over S) e^(-x^2-y^2)dxdy = 4 ˛(0 naar p/4) (1-e^((-a^2)/cos^2(q)))dq

Hoe toon ik dit aan?

Heel erg bedankt,
Luc

Luc
Student universiteit - dinsdag 18 april 2006

Antwoord

Beste Luc,

Zoals je aan de grenzen van de hoek kan zien gaan we integreren over ÚÚn achtste van het vierkant. Om de volledige oppervlakte te hebben moeten we dus vermenigvuldigen met 8. Naast de hoek hebben we bij poolco÷rdinaten de straal r: deze moet lopen van 0 tot aan de rechterzijkant van het vierkant. Dit heeft als vergelijking x = a, maar in poolco÷rdinaten is x = r.cos(t) zodat: r.cos(t) = a r = a/cos(t). Dus; r loopt van 0 tot a/cos(t). Vergeet tenslotte niet dat dxdy overgaat in rdrdt, zodat we krijgen:

q44999img1.gif

Dit kan je nu integreren naar r, als het goed is vind je dan de opgegeven integraal in theta.

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
dinsdag 18 april 2006


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb