De digitale vraagbaak voor het wiskundeonderwijs

home |  vandaag |  gisteren |  bijzonder |  prikbord |  gastenboek |  wie is wie? |  contact

HOME

samengevat
vragen bekijken
een vraag stellen
hulpjes
zoeken
FAQ's
links
twitter
boeken
help

inloggen

colofon

  \require{AMSmath} Printen

Oppervlakte van een kromme

Ik moet de oppervlakte bepalen van volgende kromme (in poolco÷rdinaten):

r = sinq + 1

S
= 1/20˛2p(sinq+1)2dq = 1/20˛2p(sin2q+2sinq+1)dq = 1/2[1/2(q+1/2sin2q)-2cosq+q]02p Na dit verder uit te rekenen kom ik uit op een oppervlakte van 3p/2. Dit lijkt me wel mogelijk.

Ik heb de kromme ook eens getekend, deze lijkt op een omgedraaid hart, kan dat ?

Ik wou gewoon eens checken of ik goed bezig was of niet.

Bedankt.

Stef
Student universiteit BelgiŰ - woensdag 25 januari 2006

Antwoord

Beste Stef,

De oppervlakte 3p/2 lijkt me inderdaad te kloppen en de grafiek is inderdaad een hartvorm, het is dan ook de vergelijking van een zogenaamde cardio´de.

Goed bezig !

mvg,
Tom

Wie is wie?
Vragen naar aanleiding van dit antwoord? Klik rechts..!
woensdag 25 januari 2006
 Re: Oppervlakte van een kromme 


klein |  normaal |  groot

home |  vandaag |  bijzonder |  twitter |  gastenboek |  wie is wie? |  colofon

©2001-2019 WisFaq - versie IIb